Skip to main content
Log in

Superplastic Behavior of Al-4.5Mg-0.46Mn-0.44Sc Alloy Sheet Produced by a Conventional Rolling Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article describes the superplastic behavior of the Al-4.5Mg-0.46Mn-0.44Sc alloy. The investigated alloy was produced by casting and was conventionally processed to form a sheet with a thickness of 1.9 mm and an average grain size of 11 μm. The superplastic properties of the alloy were investigated using a uniaxial tensile testing with a constant cross-head speed and with a constant strain rate in the range 1 × 10−4 to 5 × 10−2 s−1 at temperatures from 390 to 550 °C. The investigations included determinations of the true-stress, true-strain characteristics, the maximum elongations to failure, the strain-rate sensitivity index m, and the microstructure of the alloy. The m-values determined with the strain-rate jump test varied from 0.35 to 0.70 in the temperature interval from 390 to 550°C and strain rates up to 2 × 10−2 s−1. The m-values decreased with increased strain during pulling. The elongations to failure were in accordance with the m-values. They increased with the temperature and were over 1000%, up to 1 × 10−3 s−1 at 480 °C and up to 1 × 10−2 s−1 at 550 °C. A maximum elongation of 1969% was achieved at an initial strain rate of 5 × 10−3 s−1 and 550 °C. The results show that the addition of about 0.4 wt.% of Sc to the standard Al-Mg-Mn alloy, fabricated by a conventional manufacturing route, including hot and cold rolling with subsequent recrystallization annealing, results in good superplastic ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J.S. Vetrano, C.A. Lavender, C.H. Hamilton, M.T. Smith, and S.M. Bruemmer, Superplastic Behaviour in a Commercial 5083 Aluminium Alloy, Scr. Metall. Mater. 30, 565–570 (1994)

    Article  CAS  Google Scholar 

  2. R. Verma, A.K. Ghosh, S. Kim, and C. Kim, Grain Refinement and Superplasticity in 5083 Al, Mater. Sci. Eng. A 191, 143–150 (1995)

    Article  Google Scholar 

  3. R. Verma, P. A. Friedman, A. K. Ghosh, S. Kim, and C. Kim, Characterization of Superplastic Deformation Behaviour of a Fine Grain 5083 Al Sheet, Metall. Mater. Trans. A. 27, 1889–1898 (1996)

    Article  Google Scholar 

  4. F. Li, W.T. Roberts, P.S. Bate, Superplasticity and the Development of Dislocation Structures in an Al-4.5%Mg Alloy, Acta Mater., 44 (1), 217–233 (1996)

    Article  CAS  Google Scholar 

  5. H. Iwasaki, H. Hosokawa, T. Mori, T. Tagata, and K. Higashi, Quantitative Assessment of Superplastic Deformation Behavior in a Commercial 5083 Alloy, Mater. Sci. Eng. A, 252, 199–202 (1998)

    Article  Google Scholar 

  6. I.C. Hsiao, and J.C. Huang, Development of Low Temperature Superplasticity in Commercial 5083 Al-Mg Alloys, Scr. Mater., 40 (6), 697–703 (1999)

    Article  CAS  ADS  Google Scholar 

  7. I.C. Hsiao, J.C. Huang, and S.W. Su, Grain Structure, Texture Evolution and Deformation Mechanism during Low Temperature Superplasticity in 5083 Al-Mg Alloy, Mater. Trans. JIM, 40 (8), 744–753 (1999)

    CAS  Google Scholar 

  8. P.A. Friedman, and W.B. Copple, Superplastic Response in Al-Mg Sheet Alloys, J. Mater. Eng. Perform., 13 (3), 335–347 (2004)

    Article  CAS  Google Scholar 

  9. R.M. Cleveland, A.K. Ghosh, and J.R. Bradley, Comparison of Superplastic Behavior in Two 5083 Aluminium Alloys, Mater. Sci. Eng. A. 351, 228–236 (2003)

    Article  CAS  Google Scholar 

  10. L.D. Hefti, Commercial Airplane Applications of Superplastically Formed AA5083 Aluminium Sheet, J. Mater. Eng. Perform. 16 (2), 136–141 (2007)

    Article  CAS  Google Scholar 

  11. S. Agarwal, C.L. Briant, P.E. Krajewski, A.F. Bower, and E.M. Taleff, Experimental Validation of Two-dimensional Finite Element Method for Simulating Constitutive Response of Polycrystals During High Temperature Plastic Deformation, J. Mater. Eng. Perform. 16 (2), 170–178 (2007)

    Article  CAS  Google Scholar 

  12. R. Verma, and S. Kim, Superplastic Behavior of Copper-Modified 5083 Aluminium Alloy, J. Mater. Eng. Perform. 16 (2), 185–191 (2007)

    Article  CAS  Google Scholar 

  13. Y. Luo, C. Miller, G. Luckey, P. Friedman, and Y. Peng, On Practical Forming Limits in Superplastic Forming of Aluminium Sheet, J. Mater. Eng. Perform. 16(3), 274–283 (2007)

    Article  CAS  Google Scholar 

  14. H. Raman, G. Luckey, G. Kridli, and P. Friedman, Development of Accurate Constitutive Models for Simulation of Superplastic Forming, J. Mater. Eng. Perform. 16(3), 284–292 (2007)

    Article  CAS  Google Scholar 

  15. M.A. Kulas, P.E. Krajewski, J.R. Bradley, and E.M. Taleff, Forming-Limit Diagrams for Hot-Forming of AA5083 Aluminium Sheet: Continuously Cast Material, J. Mater. Eng. Perform. 16(3), 308–313 (2007)

    Article  CAS  Google Scholar 

  16. N. Chandra, S.C. Rama, and Z. Chen, Critical Issues in the Industrial Application of SPF-Process Modeling and Design Practices, Mater. Trans. JIM. 40(8), 723–736 (1999)

    CAS  Google Scholar 

  17. T.G. Langdon, The Mechanical Properties of Superplastic Materials, Metall. Trans. A. 13(5), 689–701 (1982)

    Article  CAS  Google Scholar 

  18. K.A. Padmanabhan, R.A. Vasin, and F.U. Enikeev, Phenomenology of Superplastic Flow, Superplastic Flow: Phenomenology and Mechanics, Springer Verlag, Berlin Heidelberg, New York, 2001, p 5–26

  19. T.G. Langdon, Recent Developments in High Strain Rate Superplasticity, Mater. Trans., JIM. 40(8), 716–722 (1999)

    CAS  Google Scholar 

  20. N. Tsuji, K. Shiotsuki, and Y. Saito, Superplasticity of Ultra-Fine Grained Al-Mg Alloy Produced by Accumulative Roll-Bonding, Metall. Trans. JIM. 40(8), 765–771 (1999)

    CAS  Google Scholar 

  21. K. Higashi, High Strain Rate Superplasticity in Japan, Mater. Sci. Technol. 16, 1320–1329 (2000)

    CAS  Google Scholar 

  22. M. Kawasaki, R.B. Figueiredo, C. Xu, and T.G. Langdon, Developing Superplastic Ductilities in Ultrafine-Grained Metals, Metall. Mater. Trans. A 38(9), 1891–1898 (2007)

    Article  CAS  Google Scholar 

  23. Z. Horita, M. Furukawa, N. Nemoto, and T.G. Langdon, Development of Fine Grained Structures Using Severe Plastic Deformation, Mater. Sci. Technol. 16, 1239–1245 (2000)

    Article  CAS  Google Scholar 

  24. T.G. Langdon, The Processing of Ultrafine-Grained Materials Through the Application of Severe Plastic Deformation, J. Mater. Sci. 42(10), 3388–3397 (2007)

    Article  CAS  ADS  Google Scholar 

  25. P.B. Berbon, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon, An Evaluation of Superplasticity in Aluminium-Scandium Alloys Processed by Equal-Channel Angular Pressing, Mater. Trans. JIM. 40(8), 772–778 (1999)

    CAS  Google Scholar 

  26. M. Furukawa, A.Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon, Influence of Magnesium on Grain Refinement and Ductility in a Dilute Al-Sc Alloy, Acta Mater. 49, 3829–3838 (2001)

    Article  CAS  Google Scholar 

  27. Y. Peng, Z. Yin, B. Nie, and L. Zhong, Effect of minor Sc and Zr on Superplasticity of Al-Mg-Mn Alloys, Trans. Nonferr. Met. Soc. China. 17, 744–750 (2007)

    Article  CAS  Google Scholar 

  28. R.R. Sawtell, and G. L. Jensen, Mechanical Properties and Microstructures of Al-Mg-Sc Alloys, Metall. Trans. A 21, 421–430 (1990)

    Article  Google Scholar 

  29. T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev, High Strain Rate Superplasticity in a Continuously Recrystallized Al-6%Mg-0.3%Sc Alloy, Acta Mater. 46(8), 2789–2800 (1998)

    Article  CAS  Google Scholar 

  30. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon, Superplastic Forming at High Strain Rates After Severe Plastic Deformation, Acta Mater. 48(14), 3633–3640 (2000)

    Article  CAS  Google Scholar 

  31. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon, An Evolution of the Flow Behavior During High Strain Rate Superplasticity in an Al-Mg-Sc Alloy, Metall. Mater. Trans. A. 32, 707–716 (2001)

    Google Scholar 

  32. N. Balasubramanian, and T.G. Langdon, An Analysis of Superplastic Flow After Processing by ECAP, Mater. Sci. Eng. A. 410, 476–479 (2005)

    Article  CAS  Google Scholar 

  33. J. Röyset, Scandium in Aluminium Alloys Overview: Physical Metallurgy, Properties and Applications, Metall. Sci. Technol. 25(2), 11–21 (2007)

    Google Scholar 

  34. F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, Superplastic Behavior and Microstructure Evolution in a Commercial Al-Mg-Sc Alloy Subjected to Intense Plastic Straining, Metall. Mater. Trans. A. 35, 2383–2392 (2004)

    Article  Google Scholar 

  35. D.A. Hughes, M.E. Kassner, M.G. Stout, and J.S. Vetrano (1998) Metal Forming at the Center of Excellence for the Synthesis and Processing of Advanced Materials. JOM 50(6):16–21

    Article  CAS  Google Scholar 

  36. J. Hedworth and M.J. Stowell, The Measurement of Strain-Rate Sensitivity in Superplastic Alloys, J. Mater. Sci. 6, 1061–1069 (1971)

    Article  CAS  ADS  Google Scholar 

  37. T.R. McNelly, M.E. McMahon, and S.J.Hales, An EBSP Investigation of Alternate Microstructures for Superplasticity in Aluminium-Magnesium Alloys, Scr. Mater. 36(6), 369–375 (1997)

    Article  Google Scholar 

  38. M.T. Pérez-Prado, G. Gonzáles-Doncel, O.A. Ruado, and T.R., Texture Analysis of the Transition from Slip to Grain Boundary Sliding in a Discontinuously Recrystallized Superplastic Aluminium Alloy, Acta Mater. 49(12), 2259–2268

    Article  Google Scholar 

  39. T. Sakuma and K. Higashi, Summary in the Project “Towards Innovation in Superplasticity”, Mater. Trans. JIM. 40(8), 702–715 (1999)

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Slovenian Research Agency (ARRS), Government of the Republic of Slovenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Smolej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolej, A., Skaza, B. & Dragojević, V. Superplastic Behavior of Al-4.5Mg-0.46Mn-0.44Sc Alloy Sheet Produced by a Conventional Rolling Process. J. of Materi Eng and Perform 19, 221–230 (2010). https://doi.org/10.1007/s11665-009-9450-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9450-6

Keywords

Navigation