Skip to main content
Log in

Prediction of Grain Growth Behavior in HAZ During Gas Tungsten Arc Welding of 304 Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the thermal cycles and the grain structure in the weld heat-affected zone (HAZ) are predicted. At the first stage, a combined heat transfer and fluid flow model is employed to assess the temperature fields during and after welding of 304 stainless steel and then, the evolution of grain structure is conducted using the predicted temperature distribution and an analytical model of grain growth. The grain sizes of the CGHAZ (coarse grain heat affected zone) achieved from the model are basically in agreement with those obtained from experimental measurement under different heat inputs in the range of 0.33-1.07 MJ/m. Both the experimental data and the calculated results show that the average grain size near the fusion plane is about two to four times larger than the average grain size in the base plate depending on the applied heat input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Gao, R. G. Thompson, Real time-temperature models for Monte Carlo simulations of normal grain growth. Acta Metall, 44, 4565 1996

    CAS  Google Scholar 

  2. N. Chakraborty, S. Chakraborty, Influences of sign of surface tension coefficient on turbulent weld pool convection in a gas tungsten arc welding (GTAW) process, Trans. ASME, Journal of Heat Transfer, 127, 848–862 (2005)

    Article  CAS  Google Scholar 

  3. N. Chakraborty, S. Chakraborty, P. Dutta, Modelling of turbulent transport in arc welding pools. International Journal of Numerical Methods for Heat and Fluid Flow, 13, 7–30 (2003)

    Article  Google Scholar 

  4. I. Kubiszyn, J. Slania, Modelling physical phenomena of welding processes, welding International 17, 89–93 (2003)

    Article  Google Scholar 

  5. G.A. Taylor, M. Hughes, N. Strusevich, K. Pericleous, finite volume methods applied to the computational modelling of welding phenomena. Appled Mathematical Modelling, 26, 309–320

    Article  Google Scholar 

  6. N. Chakraborty, S. Chakraborty, Modelling of turbulent molten pool convection in laser welding of a cooper-nickel dissimilar couple. International Journal of Heat and Mass Transfer, 50, 1805–1822 (2007)

    Article  CAS  Google Scholar 

  7. J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources. Metallurgical Transactions B, 15, 299 (1984)

    Article  Google Scholar 

  8. G.M. Oreper, J. Szekely, A comprehensive representation of transient weldpool development in spot welding operations. Metallurgical Transactions A, 18A, 1325–1332 (1987)

    Article  CAS  Google Scholar 

  9. K. Mundra, T. DebRoy, K. M. Kelkar, Numerical prediction of fluid flow and heat transfer in welding with a moving heat source. Numerical Heat Transfer, Part A, 29, 115–129 (1996)

    Article  CAS  Google Scholar 

  10. I.S. Kim, A. Basu, A mathematical model of heat transfer and fluid flow in the gas arc welding process. Journal of Materials Processing Technology, 77, 17–24 (1998)

    Article  Google Scholar 

  11. N. Chakraborty, S. Chakraborty, Thermal transport regimes and generalized regime diagrams for high energy surface melting processes, Metallurgical and Materials Transactions B, 38, 143–147 (2007)

    Article  Google Scholar 

  12. A. Farzadi, S. Serajzadeh, A.H. Kokabi, Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum International Journal of Advanced Manufacturing and Technology, 38, 258–267 (2008)

    Article  Google Scholar 

  13. M.F. Ashby, K.E. Easterling, A first report on diagram for grain growth in welds. Acta Metallurgica, 30, 1969–1999 (1982)

    Article  CAS  Google Scholar 

  14. J.C. Ion, K.E. Easterling, M.F. Ashby, A second report of microstructure and hardness heat-affected zones. Acta Metallurgica, 32, 1949–1962 (1984)

    Article  CAS  Google Scholar 

  15. S. Mishra, T. DebRoy, Measurements and Monte Carlo Simulation of Grain Growth in the Heat-affected Zone of Ti-6Al-4 V Welds. Acta Materialia, 52, 1183–1192 (2004)

    Article  CAS  Google Scholar 

  16. J. Gao, R. G. Thompson, Y. Cao, in Trends in Welding Research, ed. by H. B. Smartt, J. A. Johnson and S. A.David. Development of Monte Carlo simulation of grain growth in HAZ (ASM International, Materials Park, OH, 1996), p. 199

    Google Scholar 

  17. B. Radhakrishnan, T. Zacharia, Simulation of curvature-driven grain growth by using a modified Monte Carlo algorithm. Metall. Mater. Trans.A, 26A, 167 (1995)

    Article  CAS  Google Scholar 

  18. A.L. Wilson, R.P. Martukanitz, P.R. Howell, in Trends in Welding Research, ed. by J. M. Vitek, S. A. David, J. A. Johnson, H. B. Smartt and T. DebRoy. Experimental and computer simulation of grain growth in HSLA-100/80 steels during welding and cladding (ASM International, Materials Park, OH, 1998), p. 161

    Google Scholar 

  19. A.K. Pathak, G.L. Datta, Three-dimensional finite element analysis to predict the different zones of microstructure in submerged arc welding. Proc. Instn. Mech. Engrs, 218, 269–280 (2004)

    Article  CAS  Google Scholar 

  20. D.F. Watt, L. Coon, M. Bibby, J. Goldak and C. Henwood, An algorithm for modeling microstructural development in weld heat-affected zones (part A) reaction kinetics. Acta Metall, 36, 3029–3035 (1988)

    Article  CAS  Google Scholar 

  21. J. Choi, J. Mazumder, Numerical and experimental analysis for solidification and residual stress in the GMAW process for AISI 304 stainless steel. Journal of Materials Science, 37, 2143–2158 (2002)

    Article  CAS  Google Scholar 

  22. A. Farzadi, M. Do-Quang, S. Serajzadeh, A.H. Kokabi, and G. Amberg, Phase-field Simulation of Weld Solidification Microstructure in an Al-Cu Alloy, Model. Simul. Mater. Sci. Eng., in press (doi:10.1088/0965-0393/16/6/065005)

    Article  Google Scholar 

  23. W. Zhang, G.G. Roy, J.W. Elmer, T. DebRoy, Modeling of heat transfer and fluid flow during gas tungsten arc spot welding of low carbon steel. J Appl Phys, 93, 3022 (2003)

    Article  CAS  Google Scholar 

  24. R. Komanduri, Z.B. Hou, Thermal analysis of the arc welding process: Part I general solutions. Metl and mat Trans B, 21B, 1353–1370 (2000)

    Article  Google Scholar 

  25. J. Jiadi, R. Dutta, Three-dimensional turbulent weld pool convection in gas metal arc welding process. Science and Technology of Welding and Joining, 9, 407–414 (2004)

    Article  Google Scholar 

  26. Annual Book of ASTM Standards, 1996, Vol. 1, Sect. 3, ASTM, West Conshohoken, PA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Serajzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamshidi Aval, H., Serajzadeh, S. & Kokabi, A.H. Prediction of Grain Growth Behavior in HAZ During Gas Tungsten Arc Welding of 304 Stainless Steel. J. of Materi Eng and Perform 18, 1193–1200 (2009). https://doi.org/10.1007/s11665-009-9380-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9380-3

Keywords

Navigation