Skip to main content
Log in

Investigation on Pitting Corrosion of Nickel-Free and Manganese-Alloyed High-Nitrogen Stainless Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Pitting corrosion behavior of three kinds of nickel-free and manganese-alloyed high-nitrogen (N) stainless steels (HNSSs) was investigated using electrochemical and immersion testing methods. Type 316L stainless steel (316L SS) was also included for comparison purpose. Both solution-annealed and sensitization-treated steels were examined. The solution-annealed HNSSs showed much better resistance to pitting corrosion than the 316L SS in both neutral and acidic sodium chloride solutions. The addition of molybdenum (Mo) had no further improvement on the pitting corrosion resistance of the solution-annealed HNSSs. The sensitization treatment resulted in significant degradation of the pitting corrosion resistance of the HNSSs, but not for the 316L SS. Typical large size of corrosion pits was observed on the surface of solution-annealed 316L SS, while small and dispersed corrosion pits on the surfaces of solution-annealed HNSSs. The sensitization-treated HNSSs suffered very severe pitting corrosion, accompanying the intergranular attack. The addition of Mo significantly improved the resistance of the sensitization-treated HNSSs to pitting corrosion, particularly in acidic solution. The good resistance of the solution-annealed HNSSs to pitting corrosion could be attributed to the passive film contributed by N, Cr, and Mo. The sensitization treatment degraded the passive film by decreasing anti-corrosion elements and Cr-bearing oxides in the passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.J. Uggowitzer, R. Magdowski, and M.O. Speidel, Nickel Free High Nitrogen Austenitic Steels. ISIJ International, 1996, 36(7), p 901–908

    Article  CAS  Google Scholar 

  2. M.O. Speidel and H.J. Speidel, Nitrogen Containing Austenitic Stainless Steels, Proc. Inter. Conf. on High Nitrogen Steels 2006, H. Dong, J. Su, and M. Speidel, Eds., Metallurgical Industry Press, Beijing. Jiuzhaigou Valley, China, August 2006, p 21–29

  3. M. Sumita, T. Hanawa, and S.H. Teoh, Development of Nitrogen-Containing Nickel-Free Austenitic Stainless Steels for Metallic Biomaterials – Review, Mater. Sci. Eng. C, 2004, 24(6–8), p. 753–760

    Article  CAS  Google Scholar 

  4. P.R. Levey and A.V. Bennekom, A Mechanistic Study of the Effects of Nitrogen on the Corrosion Properties of Stainless-Steels, Corrosion, 1995, 51(12), p 911–921

    Article  CAS  Google Scholar 

  5. H.J. Grabke, The Role of Nitrogen in the Corrosion of Iron and Steels, ISIJ International, 1996, 36(7), p 777–786

    Article  CAS  Google Scholar 

  6. H. Yashiro, D. Hirayasu, and N. Kumaga, Effect of Nitrogen Alloying on the Pitting of Type 310 Stainless Steel, ISIJ International, 2002, 42(12), p. 1477–1482

    Article  CAS  Google Scholar 

  7. A.S. Vanini, J.P. Audouard and P. Marcus, The Role of Nitrogen in the Passivity of Austenitic Stainless-Steels, Corros. Sci., 1994, 36(11), p 1825–1834

    Article  Google Scholar 

  8. H. Baba, T. Kodama and Y. Katada, Role of Nitrogen on the Corrosion Behavior of Austenitic Stainless Steels, Corros. Sci., 2002, 44(10), p 2393–2407

    Article  CAS  Google Scholar 

  9. Y. Katada, N. Washizu and H. Baba, Localized Corrosion Behavior of High Nitrogen Steel, Mater. Sci. Forum, 2005, 475–479, p 225–228

    Google Scholar 

  10. H. Baba and Y. Katada, Effect of Nitrogen on Crevice Corrosion in Austenitic Stainless Steel, Corros. Sci., 2006, 48(9), p 2510–2524

    Article  CAS  Google Scholar 

  11. S.D. Chyou and H.C. Shih, X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Studies on the Passivation Behavior of Plasma Nitrided Low-Alloy Steel in Nitric Acid, Mater. Sci. Eng. A, 1991, 148(2), p 241–251

    Article  Google Scholar 

  12. I. Olefjord and L. Wegrelius, The Influence of Nitrogen on the Passivation of Stainless Steels, Corros. Sci., 1996, 38(7), p 1203–1220

    Article  CAS  Google Scholar 

  13. R. Bandy and D.V. Rooyen, Properties of Nitrogen Containing Stainless Alloy Designed for High Resistance to Pitting Corrosion, Corrosion, 1985, 41(4), p 228–233

    Article  CAS  Google Scholar 

  14. Y.C. Lu, R. Bandy, C.R. Clayton, and R.C. Newman, Surface Enrichment of Nitrogen during Passivation of a Highly Resistant Stainless Steel, J. Electrochemical Soc., 1983, 130(8), p 1774–1776

    Article  CAS  Google Scholar 

  15. C.R. Clayton, G.P. Halada and J.R. Kearns, Passivity of High Nitrogen Stainless Alloys - The Role of Metal Oxyanions and Salt Films, Mater. Sci. Eng. A, 1995, 198(1–2), p 135–144

    Article  Google Scholar 

  16. C.R. Clayton and R.G. Martin, Evidence of Anodic Segregation of Nitrogen in High Nitrogen Stainless Steels and Its Influence on Passivity, Proc. Inter. Conf. on High Nitrogen Steels 1988, J. Foct and A. Hendry, Eds., The Institute of Metals, London. Lille, France, May 1988, p 256–261

  17. I. Olefjord and C.R. Clayton, Surface-Composition of Stainless-Steel during Active Dissolution and Passivation, ISIJ International, 1991, 31(2), p 134–141

    Article  CAS  Google Scholar 

  18. G.C. Palit, V. Kain, and H.S. Gadiyar, Electrochemical Investigations of Pitting Corrosion in Nitrogen Bearing Type 316LN Stainless Steel, Corrosion, 1993, 49(12), p 977–991

    Article  CAS  Google Scholar 

  19. R.C. Newman and M.A.A. Ajjawi, A Micro-Electrode Study of the Nitrate Effect on Pitting of Stainless Steels, Corros. Sci., 1986, 26(12), p 1057–1063

    Article  CAS  Google Scholar 

  20. Y.C. Lu and M.B. Ives, Inhibition of Transpassive Reactions of Molybdenum by Nitriding, Corros. Sci., 1992, 33(2), p 317–320

    Article  CAS  Google Scholar 

  21. Y.C. Lu, M.B. Ives, and C.R. Clayton, Synergism of Alloying Elements and Pitting Corrosion Resistance of Stainless Steels, Corros. Sci., 1993, 35(1–4), p 89–96

    Article  CAS  Google Scholar 

  22. C.O.A. Olsson, The Influence of Nitrogen and Molybdenum on Passive Films Formed on the Austenoferritic Stainless Steel 2205 Studied by AES and XPS, Corros. Sci., 1995, 37(3), p 467–479

    Article  CAS  Google Scholar 

  23. R.C. Newman and T. Shahrabi, The Effect of Alloyed Nitrogen or Dissolved Nitrated Ions on the Anodic Behavior of Austenitic Stainless Steel in Hydrochloric Acid, Corros. Sci., 1987, 27(8), p 827–838

    Article  CAS  Google Scholar 

  24. H. Ezuber, A.J. Betts, and R.C. Newman, Mater. Sci. Forum, 1989, 44/45, p 247

  25. R.C. Newman, Y.C. Lu, R. Bandy, and C.R. Clayton, Mechanism of Passivation in Stainless Steels Containing High Concentrations of Nitrogen, Proc. 9th Int. Conf. Metallic Corrosion, Toronto, Canada, 1984. National Research Council, Ottawa, p 394–398

  26. G.P. Halada, C.R. Claton, D. Kim, and J.R. Kearns, Electrochemical and Surface Analytical Studies of the Interaction of Nitrogen with Key Alloying Elements in Stainless Steels, NACE/Corrosion, 1995, paper no. 531

  27. M.J. Czachor, E. Lunarska, and Z.S. Smialowska, Effect of Nitrogen Content in a 18Cr-5Ni-10Mn Stainless Steel on the Pitting Susceptibility in Chloride Solutions, Corrosion, 1975, 31(11), p 394–398

    Article  Google Scholar 

  28. R. Bandy and D. V. Rooyen, Pitting Resistant Alloys in Highly Concentrated Chloride Media, Corrosion, 1983, 39(6), p 227–236

    Article  CAS  Google Scholar 

  29. R.F.A. Jargelius-Pettersson, Application of the Pitting Resistance Equivalent Concept to Some Highly Alloyed Austenitic Stainless Steels, Corrosion, 1998, 54(2), p 162–168

    Article  CAS  Google Scholar 

  30. K. Zagorski and A. Doraczynska, Potentiodynamic Polarization Behavior of Two 17Cr-13Ni-2.5Mo Steels with different N Contents, Corros. Sci., 1976, 16(6), p 405-450

    Article  CAS  Google Scholar 

  31. I. Betova, M. Bojinov, T. Laitinen, K. Makela, P. Pohjanne, and T. Saario, The Transpassive Dissolution Mechanism of Highly Alloyed Stainless Steels I. Experimental Results and Modelling Procedure, Corros. Sci., 2002, 44(12), p 2675–2697

    Article  CAS  Google Scholar 

  32. H.H. Lee and H.H. Uhlig, Effect of Nickel in Cr-Ni Stainless Steels on the Critical Potential for Stress Corrosion Cracking, J. Electrochem. Soc., 1970, 117(1), p 18–22

    Article  CAS  Google Scholar 

  33. J. Menzel, W. Kirschner, and G. Stein, High Nitrogen Containing Ni-Free Austenitic Steels for Medical Applications, ISIJ International, 1996, 36(7), p 893–900

    Article  CAS  Google Scholar 

  34. X.Q. Wu, S. Xu, J.B. Huang, E.H. Han, W. Ke, K. Yang, and Z.H. Jiang, Uniform and Intergranular Corrosion Behavior of Nickel Free and Manganese Alloyed High Nitrogen Stainless Steels, Mater. Corros., 2008, 59. doi:10.1002/maco.200804102

    Article  CAS  Google Scholar 

  35. R.J. Brigham and E.W. Tozer, Localized Corrosion Resistance of Mn-Substituted Austenitic Stainless Steels: Effect of Molybdenum and Chromium, Corrosion, 1976, 32(7), p 274–276

    Article  CAS  Google Scholar 

  36. Y.S. Lim, J.S. Kim, S.J. Ahn, H.S. Kwon, and Y. Katada, The Influences of Microstructure and Nitrogen Alloying on Pitting Corrosion of Type 316L and 20 wt.% Mn-Substituted Type 316L Stainless Steels, Corros. Sci., 2001, 43(1), p 53–68

    Article  CAS  Google Scholar 

  37. B.R. Tzaneva, L.B. Fachikov, and R.G. Raicheff, Pitting Corrosion of Cr-Mn-N Steel in Sulphuric Acid Media, J. Appl. Electrochem., 2006, 36(3), p 347–353

    Article  CAS  Google Scholar 

  38. K. Sugimoto and Y. Sawada, The Role of Molybdenum Addition to Austenitic Stainless Steels in the Inhibition of Pitting in Acid Chloride Solutions, Corros. Sci., 1977, 17(5), p 425–445

    Article  CAS  Google Scholar 

  39. M. Urquidi-Macdonald and D.D. Macdonald, Theoretical Analysis of the Effects of Alloying Elements on Distribution Functions of Passivity Breakdown, J. Electrochem. Soc., 1989, 136(4), p 961–967

    Article  CAS  Google Scholar 

  40. C.O.A. Olsson and D. Landolt, Film Growth during Anodic Polarization in the Passive Region on 304 Stainless Steels with Cr, Mo, or W Additions Studied with EQCM and XPS, J. Electrochem. Soc., 2001, 148(11), p B438-B449

    Article  CAS  Google Scholar 

  41. J.M. Bastidas, C.L. Torres, E. Cano, and J.L. Polo, Influence of Molybdenum on Passivation of Polarised Stainless Steels in a Chloride Environment, Corros. Sci., 2002, 44(3), p 625–633

    Article  CAS  Google Scholar 

  42. F.E.T. Heakal, A.A. Ghoneim, and A.M. Fekry, Stability of Spontaneous Passive Films on High Strength Mo-Containing Stainless Steels in Aqueous Solutions, J. Appl. Electrochem., 2007, 37(3), p 405–413

    Article  CAS  Google Scholar 

  43. M.G. Pujar, N. Parvathavarthini, and R.K. Dayal, Some Aspects of Corrosion and Film Formation of Austenitic Stainless Steel Type 316LN Using Electrochemical Impedance Spectroscopy (EIS), J. Mater. Sci., 2007, 42(12), p 4535–4544

    Article  CAS  Google Scholar 

  44. R.D. Armstrong and K. Edomondson, The Impedance of Metals in the Passive and Transpassive Regions, Elecctrochim Acta, 1973, 18(12), p 937–943

    Article  CAS  Google Scholar 

  45. J.L. Polo, E. Cano, and J.M. Bastidas, An Impedance Study on the Influence of Molybdenum in Stainless Steel Pitting Corrosion, J. Electroanalytical Chem., 2002, 537(1–2), p 183–187

    Article  CAS  Google Scholar 

  46. S.J. Pawel, E.E. Stansbury, and C.D. Lundin, Role of Nitrogen in the Pitting Resistance of Cast Duplex CF-Type Stainless Steels, Corrosion, 1989, 45(2), p 125–133

    Article  CAS  Google Scholar 

  47. R.D. Willenbruch, C.R. Clayton, M. Oversluizen, D. Kim, and Y. Lu, An XPS and Electrochemical Study of the Influence of Molybdenum and Nitrogen on the Passivity of Austenitic Stainless Steel, Corros. Sci., 1990, 31(1), p 179–195

    Article  CAS  Google Scholar 

  48. Y.C. Lu, J.L. Luo, and M.B. Ives, Effect of Nitriding on the Anodic Behavior of Iron and Its Significance in Pitting Corrosion of Iron-Based Alloys, Corrosion, 1991, 47(11), p 835–839

    Article  CAS  Google Scholar 

  49. G.P. Halada, D. Kim, and C.R. Clayton, A Surface analytical Study of the Influence of Nitrogen on the Electrochemical Passivation of High Ni Stainless Steels and Thin Mo-Ni Films, NACE/Corrosion, 1995, paper no. 536

Download references

Acknowledgments

This study was jointly supported by the Science and Technology Foundation of China (50534010) and the Innovation Fund of Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Fu, Y., Huang, J. et al. Investigation on Pitting Corrosion of Nickel-Free and Manganese-Alloyed High-Nitrogen Stainless Steels. J. of Materi Eng and Perform 18, 287–298 (2009). https://doi.org/10.1007/s11665-008-9295-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-008-9295-4

Keywords

Navigation