Skip to main content
Log in

Modeling and Experimental Validation of Ductile Iron Castings During Solidification

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ductile irons are still important engineering materials due to their high strength and toughness, and relatively low price. In the foundries, ductile irons suffer from shrinkage porosity formation during solidification, which is detrimental to the mechanical properties. In order to minimize porosity formation, large risers are normally used in the design, which reduces porosity level sometimes but leads to a low yield. In order to better understand the shrinkage behavior of ductile iron during solidification, a micro model was developed to simulate the microstructure formation. The density change during solidification and the room temperature mechanical properties can be calculated based on the microstructure. The simulation has been compared with the experimental results and found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.M. Stefanescu (2005) Materials Science and Engineering A, V413–414, 322–333

    Article  Google Scholar 

  2. W. Oldfield (1966) ASM Trans. 59, 945

    CAS  Google Scholar 

  3. D.M. Stefanescu, S. Trufinescu (1974) Z. Metall., 9, 610

    Google Scholar 

  4. H. Fredriksson and L. Svensson, Computer Simulation of Structure Formation and Segregation During the Solidification of Cast Iron, The Physical Metallurgy of Cast Iron, H. Fredriksson and M. Hillert, Eds., Elsevier, 1985, p 273–284

  5. H. Fredriksson, L. Svensson (1988) Simulation of Grey Cast-Iron Solidification in a Shaped Casting. D.M. Stefanescu, G.J. Abbaschian, R.J. Bayuzick (Eds.), Solidification Processing of Eutectic Alloys. The Metallurgical Soc., Warrendale, PA, pp. 153–162

    Google Scholar 

  6. D.M. Stefanescu, C. Kanetkar (1985) Computer Modeling of the Solidification of Eutectic Alloys: The Case of Cast Iron. D.J. Srolovitz (Ed.), Computer Simulation of Microstructural Evolution. the Metallurgical Soc., Warrendale, PA, pp. 171–188

    Google Scholar 

  7. J. Lacaze, M. Castro, C. Selig, G. Lesoult (1991) Solidification of Spheroidal Graphite Cast Irons. M. Rappaz et al. (Eds.), Modeling of Casting, Welding and Advanced Solidification Processes V. The Metallurgical Soc., Warrendale, PA, pp. 473–478

    Google Scholar 

  8. E. Fras, W. Kapturkiewicz, A.A. Burbielko (1995) Micro-Macro Modeling of Casting Solidification Controlled By Transient Diffusion and Undercooling. M. Croos, J. Campbell (Eds.), Modeling of Casting, Welding and Advanced Solidification Processes VII. The Metallurgical Soc., Warrendale, PA, pp. 679–686

    Google Scholar 

  9. K.C. Su, I. Ohnaka, I. Yamauchhi, and T. Fukusako, Modelling of Solidified Structure of Castings, The Physical Metallurgy of Cast Iron, H. Fredriksson and M. Hillert, Eds., Elsevier, 1985, p 181–189

  10. S. Chang, D. Shangguan, D.M. Stefanescu (1991) Metall. Trans. 22A, 915

    Google Scholar 

  11. D.M. Stefanescu and C.S. Kanetkar, Computer Modeling of the Solidification of Eutectic Alloys: Comparison of Various Models for Eutectic Growth of Cast Iron, AFS Trans., 1987, p 139–144

  12. L. Nastac, D. M. Stefanescu (1995) AFS Trans., 103, 329–337

    CAS  Google Scholar 

  13. D.M. Stefanescu, A. Catalina, X. Guo, L. Chuzhoy, M.A. Pershing, and G. L. Biltgen, Solidification Processing 1997, J. Beech and H. Jones, Eds., University of Sheffield, UK, 7–9 July 1997, p 609–613

  14. G. Lesoult, M. Castro, J. Lacaze (1998) Acta Mater., 46(3), 983–995

    Article  CAS  Google Scholar 

  15. G. Lesoult, M. Castro, J. Lacaze (1998) Acta Mater., 46(3), 997–1010

    Article  Google Scholar 

  16. F.J. Bradley (1990) Metall. Trans. B., 24B, 539

    Article  Google Scholar 

  17. R. Vijayaraghavan, F.J. Bradley (1999) Scripta Materialia, 41(11), 1247–1253

    Article  CAS  Google Scholar 

  18. D. Venugopalan (1990) Metall. Trans. A, 21A, 913–918

    Article  Google Scholar 

  19. L. Nastac, D.M. Stefanescu (1995) AFS Trans., 103, 329–337

    CAS  Google Scholar 

  20. Q. Chen, E.W. Langer, P.N. Hansen (1995) Scand. J. Metall., 24, 48–62

    CAS  Google Scholar 

  21. M.I. Onsoien, O. Grong, O. Gundersen, T. Skaland (1999) Metallurgical and Materials Transactions A, 30A, 1053–1068

    Article  Google Scholar 

  22. M.I. Onsoien, O. Grong, O. Gundersen, T. Skaland (1999) Metallurgical and Materials Transactions A, 30A, 1069–1079

    Article  Google Scholar 

  23. N. Saunders and A.P. Miodownik, CALPHAD: Calculation of Phase Diagrams A Comprehensive Guide. Pergamon, 1998

  24. N. Saunders, X. Li, A.P. Miodownik, and J.P. Schille, Modeling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys, MS Light Met., 2003, p 999–1004

  25. D. Raabe, Computational Materials Science: The Simulation of Materials Microstructure and Properties. Wiley-VCH, 2002

  26. V. Krutiš and J. Roučka, Shrinkage of Graphitic Cast Irons. ESI Group Internal Report

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzheng Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J., Samonds, M.T. Modeling and Experimental Validation of Ductile Iron Castings During Solidification. J. of Materi Eng and Perform 17, 831–837 (2008). https://doi.org/10.1007/s11665-008-9246-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-008-9246-0

Keywords

Navigation