Skip to main content
Log in

Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Magnesium components are increasingly being considered for use in vehicle structures due to the potential for weight reduction, fuel economy improvement, and emission reduction. Apart from castings, magnesium sheet components can open an entirely new opportunity for mass reduction. Magnesium’s poor ductility at room temperature, however, requires sheet forming to be carried out at elevated temperatures. The forming limits of magnesium alloy AZ31B-O were measured with both in-plane (Marciniak) and out-of-plane (limiting dome height) test methods at 300 °C. Forming limits of aluminum alloys 5182-O and 5754-O were also measured at room temperature and compared with published forming limit diagram data to validate the test procedures. Differences between the in-plane and out-of-plane test methods are discussed along with a description of failure modes and experimental challenges in obtaining strain localization and fracture in the appropriate locations. The plane strain forming limit (FLDo) of AZ31B at 300 °C was on the order of 67% strain, which agrees well with published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Chemical etch electrolyte from Lectroetch®.

  2. Interlaken Technologies Corporation, Chaska, MN.

  3. ASAME technology LLC.

References

  1. A.A. Luo, Material Comparison and Potential Applications of Magnesium in Automobiles, Magnesium Technology 2000, H.I. Kaplan, J. Hryn, and B. Clow, Eds., TMS, 2000, p 89–98

  2. P.E. Krajewski, “Elevated Temperature Forming of Sheet Magnesium Alloys,” SAE Book Number: SP-1683, SAE Paper No. 2001-01-3104

  3. B.L. Mordike, T. Ebert, Magnesium – Properties – Applications – Potential. Mater. Sci. Eng. A 302 (2001) 37–45

    Article  Google Scholar 

  4. B. Passek, Light Weight Design in Body-in-White Development Considering Passive Safety Requirements, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, November 2001 (New York, NY), AMD Vol. 251, IMECE2001/AMD-25440, 2001

  5. H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi Deformation Mechanism in a Coarse-Grained Mg-Al-Zn Alloy at Elevated Temperatures. Int. J. Plast. 17 (2001) 387–397

    Article  CAS  Google Scholar 

  6. E. Doege, K. Dröder Sheet Metal Forming of Magnesium Wrought Alloys – Formability and Process Technology. J. Mater. Process. Technol. 115 (2001) 14–19

    Article  CAS  Google Scholar 

  7. F.-K. Chen, T.-B. Huang Formability of Stamping Magnesium-Alloy AZ31 Sheets. J. Mater. Process. Technol. 142 (2003) 643–647

    Article  CAS  Google Scholar 

  8. K. Siegert, and S. Jäger, M. Vulcan Pneumatic Bulging of Magnesium AZ 31 Sheet Metals at Elevated Temperatures. CIRP Ann. –Manuf. Technol. 52 (2003) 241–244

    Article  Google Scholar 

  9. K. Siegert and S. Jäger, “Warm Forming of Magnesium Sheet Metal,” SAE Technical Paper 2004-01-1043, reprinted from Sheet/Hydro/Gas Forming Technology and Modeling (SP1840)

  10. D.L. Yin, K.F. Zhang, G.F. Wang, W.B. Han Warm Deformation Behavior of Hot-Rolled AZ31 Mg Alloy. Mater. Sci. Eng. A 392 (2005) 320–325

    Article  Google Scholar 

  11. J.E. Carsley, S. Kim Warm Hemming of Magnesium Sheet. J. Mater. Eng. Perform. 16 (2007) 331–338

    Article  CAS  Google Scholar 

  12. H. Li, E. Hsu, J. Szpunar, R. Verma, J.T. Carter Determination of Active Slip/Twinning Modes in Mg Alloy Near Room Temperature. J. Mater. Eng. Perform. 16 (2006) 321–326

    Article  Google Scholar 

  13. S.P. Keeler, W.A. Backofen Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches. ASM Trans. Quart. 56 (1963) 25–48

    Google Scholar 

  14. “Standard Test Method for Determining Forming Limit Curves,” ASTM E 2218-02

  15. R.A. Ayres, Aids for Evaluating Sheet Metal Formability: The Limiting Dome Height (LDH) Test and the Circle Grid Analyzer, Novel Techniques in Metal Deformation Testing, R.H. Wagoner, Ed., TMS, 1983, p 47–64

  16. B. Taylor, Sheet Formability Testing, Metals Handbook, 9th ed., Vol. 8, Mechanical Testing, American Society for Metals, 1985, p 547–570

  17. Z. Marciniak, K. Kuczynski Limit Strains in the Processes of Stretch-Forming Sheet Metal. Int. J. Mech. Sci. 9 (1967) 609–620

    Article  Google Scholar 

  18. A.K. Ghosh, S.S. Hecker Stretching Limits in Sheet Metals: In-Plane Versus Out-of-Plane Deformation. Metall. Trans. 5 (1974) 2161–2164

    Article  CAS  Google Scholar 

  19. T. Foecke, S.W. Banovic, R.J. Fields Sheet Metal Formability Studies at the National Institute of Standards and Technology. JOM 53 (2001) 27–30

    Article  CAS  Google Scholar 

  20. K.S. Raghavan A Simple Technique to Generate In-Plane Forming Limit Curves and Selected Applications. Metall. Mater. Trans. A 26A (1995) 2075–2084

    Article  CAS  Google Scholar 

  21. “Determination of the Experimental FLD for 9 Aluminum Alloy Sheet Materials (Project #240 290),” Industrial Research+Development Institute, 20 December 2002

  22. GM Formability Database – GM6412M – Grades AL115N1 (5182) and AL90N3 (5754), prepared by Susan Hartfield-Wunsch, 7 March 2001

  23. A. Brooks, Novelis Corporation, private communication, 31 July 2007

  24. N. Abedrabbo, F. Pourboghrat, J. Carsley Forming of AA5182-O and AA5754-O at Elevated Temperatures Using Coupled Thermo-Mechanical Finite Element Models. Int. J. Plast. 23 (2007) 841–875

    Article  CAS  Google Scholar 

  25. M. Aghaie-Khafri, R. Mahmudi Prediction of Plastic Instability and Forming Limit Diagrams. Int. J. Mech. Sci. 46 (2004) 1289–1306

    Article  Google Scholar 

  26. N. Abedrabbo, F. Pourboghrat, J. Carsley Forming of Aluminum Alloys at Elevated Temperatures – Part 1: Material Characterization. Int. J. Plast. 22 (2006) 314–341

    Article  CAS  Google Scholar 

  27. N. Abedrabbo, F. Pourboghrat, J. Carsley Forming of Aluminum Alloys at Elevated Temperatures – Part 2: Numerical Modeling and Experimental Verification. Int. J. Plast. 22 (2006) 342–373

    Article  CAS  Google Scholar 

  28. R. Verma, P.A. Friedman, A.K. Ghosh, C. Kim, S. Kim Superplastic Forming Characteristics of Fine-grained 5083 Aluminum. J. Mater. Eng. Perform. 4 (1995) 543–550

    Article  CAS  Google Scholar 

  29. R. Verma, J.T. Carter, and P.E. Krajewski, “Assessment of AZ31 Mg Sheet for Automotive Applications,” Presented at the Light Metals Technology 2007, Sep 24–26, 2007, Saint Sauveur, Quebec, Canada

  30. N.R. Harrison, S.G. Luckey, P.A. Friedman, and Z.C. Xia, Influence of Friction and Die Geometry on Simulation of Superplastic Forming of Al-Mg Alloys, Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.C. Schroth, Eds., TMS, 2004, p 301–309

  31. S.G. Luckey, P.A. Friedman, and Z.C. Xia, Aspects of Element Formulation and Strain Rate Control in Numerical Modeling of Superplastic Forming, Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.C. Schroth, Eds., TMS, 2004, p 371–380

  32. J.T. Carter, R. Verma, and P.E. Krajewski, “Mechanical Behavior of AZ31 Sheet Materials at Room and Elevated Temperature,” to be presented at the 2008 TMS Annual Meeting in New Orleans, LA, and to be published in “Magnesium Technology 2008”

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Carsley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, E., Carsley, J. & Verma, R. Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures. J. of Materi Eng and Perform 17, 288–296 (2008). https://doi.org/10.1007/s11665-007-9196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9196-y

Keywords

Navigation