Skip to main content
Log in

Mössbauer Effect Study of Room Temperature Cathodic Polarization of AISI321SS Austenitic Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Room temperature hydrogen charging by cathodic polarization of cold rolled AISI 321SS austenitic stainless steel in appropriate electrolytic medium leads to its decomposition to structural defects and a ferromagnetic α′-martensitic phase. The degree of decomposition, and hence the resulting products depends on hydrogen charging time with martensitic transformation yielding up to 14-22% martensite for charging periods of 30 and 96 h, respectively. Based on Mössbauer spectroscopy measurements, the magnetically split portion of the spectra corresponding to the α′-martensite phase was resolved in terms of one Fe-site with internal magnetic field in the range of 260-265 ± 10 kOe. Both the uncharged and retained (after hydrogen charging) austenitic phases were resolved similarly at ambient and sub-ambient cryogenic temperatures. The austenitic phase in both the uncharged and charged states remained stable from ambient down to 4.2 K, where they exhibited singlet broadening suggesting weakly ferro/antifero-magnetic ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Balnchard, A.R. Troiano (1960) La fragilisation des metaux par l’hydrogene etc (Hydrogen Embrittlement of Metals). Memoires Scientifiques de la Revue de Metallurgie 57(6), 409–422

    Google Scholar 

  2. A.R. Troyano (1960) Embrittlement by Hydrogen and Other Interstitials. Metal Prog, 77(2), 112–117

    Google Scholar 

  3. R.A. Oriani (1978) Hydrogen Embrittlement of Steels. Annual Rev. Mater. Sci., 8, 327–357

    Article  CAS  Google Scholar 

  4. H.K. Birnbaum, Environment—Sensitive Fracture of Engineering Materials, Z.A. Forouis, Ed., (Warrendale, PA), The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1979, p 326

  5. J.P. Hirth (1980) Effects of Hydrogen on the Properties of Iron and Steel. Metall. Trans.A, 11A(6), 861–890

    Article  CAS  Google Scholar 

  6. J. Burke, M.L. Mehta, and R. Narayan, Hydrogen Embrittlement of Type 304L Austenitic Stainless Steel, International Congress on Hydrogen in Metals, (Paris), (1972), 149–158

  7. S. Chen M. Gao, R.P. Wei (1996) Hydride Formation and Decomposition in Electrolytically Charged Metastable Austenitic Stainless Steels. Metall. Mater Trans A., 27A(1), 29–40

    Article  CAS  Google Scholar 

  8. N. Narita, C.J. Altstetter, H.K. Birnbaum (1982) Hydrogen-Related Phase Transformation in Austenitic Stainless Steels. Metall. Trans. A 13A(8), 1355–1365

    Article  Google Scholar 

  9. D.A. Vaughan, D.I. Phalen, C.L. Peterson, W.K. Boyd (1963) Relationship Between Hydrogen Pickup and Susceptible Paths in Stress Corrosion Cracking of Type 304 Stainless Steel. Corrosion, 19(9), 315t–326t

    Article  Google Scholar 

  10. Y.M. Liou, S.Y. Chiu, C.L. Lee, H.C. Shih (1999) Electrochemical Pitting Behavior of Type 321 Stainless Steel in Sulfide-Containing Chloride Solutions. J. Appl. Electrochem, 29(12), 1377–1381

    Article  CAS  Google Scholar 

  11. H.J. Basler and D. Eiffer, Low-Cycle Fatigue and Elasto-Plastic Behavior of Materials, K.T. Rie and P.D. Portella, Ed., (Amsterdam) Elsevier, 1998

  12. M. Grosse, D. Kalkhof, L. Keller, N. Schell (2004) Influence Parameters of Martensitic Transformation During Low Cycle Fatigue for Steel AISI 321. Physica B, 350(1–3), 102–106

    Article  CAS  Google Scholar 

  13. M. Ridlova, L. Hyspecka, F. Wenger, P. Ponthiaux, J. Galland, P. Kubecka (2003) Strain-Induced Martensitic Transformation in Type 321 Stainless Steel. J. Phys. IV France, 112(1), 429–432

    Article  Google Scholar 

  14. O.N.C. Uwakweh, J.-M.R. Genin (1991) Morphology and Aging of the Martensite Induced by Cathodic Hydrogen Charging of High-Carbon Austenitic Steels. Metall. Trans. A, 22A, 1979–1991

    Article  CAS  Google Scholar 

  15. S. Chen M. Gao R.P. Wei (1993) Phase Transformation and Cracking During Aging of an Electrolytically Charged Fe18Cr12Ni Alloy at Room Temperature. Scripta Metall. Mater., 28(4), 471–476

    Article  CAS  Google Scholar 

  16. M. Hoelzel, S.A. Danilkin, H. Ehrenberg, D.M. Toebbens, T.J. Udovic, H. Fuess, H. Wipf (2004) Effects of High Pressure Charging on the Structure of Austenitic Stainless Steels. Mater. Sci. Eng. A, A384(1–2), 255–261

    Article  CAS  Google Scholar 

  17. Q. Yang, J.L. Luo (2000) Martensite Transformation and Surface Cracking of Hydrogen Charged and Degassed Type 304 Stainless Steel. Mater. Sci. Eng. A., A288(1), 75–83

    Article  CAS  Google Scholar 

  18. S.L. Zevin, Z. Melamed (1985) X-ray Diffraction by Cathodically Charged Austenitic Stainless Steel. J. Appl. Cryst., 18(5), 267–271

    Article  CAS  Google Scholar 

  19. V.G. Gavriljuk, H. Hänninen, A.S. Tereshchenko, K. Ullakko (1993) Effects of Nitrogen on Hydrogen-Induced Phase Transformations in Stable Austenitic Steel. Scripta Metall. Mater., 28(2), 247–252

    Article  CAS  Google Scholar 

  20. K. Mumtaz, S. Takahashi, J. Echigoya, Y. Kamada, L.F. Zhang, H. Kikuchi, K. Ara, M. Sato (2004) Magnetic Measurements of Martensitic Transformation in Austenitic Stainless Steel After Room Temperature Rolling. J. Mater. Sci., 39(1), 85–97

    Article  CAS  Google Scholar 

  21. D.G. Rancourt J.Y. Ping (1991) Voigt-Based Methods for Arbitrary-Shape Static Hyperfine Parameter Distributions in Mössbauer Spectroscopy. Nucl. Instr. Meth. Phys. Res. Sect. B, B58(1), 85–97

    Article  CAS  Google Scholar 

  22. D.C. Cook (1987) Strain Induced Martensite Formation in Stainless Steel. Metall. Trans. A., 18A, 201–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Kowalik and Charles Lei for helping in the XRD measurements in Naval Air Systems Command, Patuxent River, MD. In addition, Oswald N.C. Uwakweh wishes to acknowledge the support of Dr. Yapa Rajapakse, the program manager of ONR-grant No. N000140310540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswald N.C. Uwakweh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uwakweh, O.N., Agarwala, V.S. Mössbauer Effect Study of Room Temperature Cathodic Polarization of AISI321SS Austenitic Stainless Steel. J. of Materi Eng and Perform 17, 561–565 (2008). https://doi.org/10.1007/s11665-007-9167-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9167-3

Keywords

Navigation