Skip to main content
Log in

Improvement of Drawability at Room Temperature in AZ31 Magnesium Alloy Sheets Processed by Equal Channel Angular Rolling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A new rolling process, so-called as equal channel angular rolling (ECAR) process, for fabricating the magnesium alloy sheets with an enhanced formability at room temperature is introduced. The ECAR device was designed so that it could feed the sheet with the preheated temperature of 673 K in a continuous manner at a relatively high speed of 0.43 m/s. A significant amount of the shear deformation could be achieved by passing the sheet through the mold with the oblique angle of 115°. The x-Ray spectra were examined to analyze the crystal orientation of the sheets, which indicates that the crystal orientation with non-basal plane was fabricated after ECAR processing. The grain was not refined and plenty of twins were brought out because of the low-shear deforming temperature. The high stress and low ductility for the ECARed specimens can be related to the presence of twins. In spite of having the similar optical microstructure, the elongation to failure for the ECARed specimens after annealing was above 33%, which was larger than that of about 20% for the as-received/annealed specimens. And the drawability for the ECARed/annealed specimens with the Erichsen value of 6.24 mm and the limiting drawing ratio of 1.6 can be obtained, which is improved dramatically than that of 4.18 mm and 1.2 for the as-received/annealed specimens, respectively. These can be related to the rotation of (0002) basal plane toward the rolling direction because of the shear deformation induced by ECAR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shoichiro Y., Hisashi N., Hirokuni Y., Manabe K. (2003) Formability Enhancement in Magnesium Alloy Stamping using a Local Heating and Cooling Technique: Circular Cup Deep Drawing Process. J. Mater. Processing Technol. 142(3):609–613

    Article  CAS  Google Scholar 

  2. Chen F.K., Huang T.B., Chang C.K. (2003) Deep Drawing of Square Cups with Magnesium Alloy AZ31 Sheets. Int. J. Machine Tools Manufacture 43(15):1553–1559

    Article  Google Scholar 

  3. Chang T.C., Wang J.Y., Ming O.C., Lee S. (2003) Grain Refining of Magnesium Alloy AZ31 by Rolling. J. Mater. Processing Technol. 140:588–591

    Article  CAS  Google Scholar 

  4. Pérez-Prado M.T., del Valle J.A., Ruano O.A. (2005) Achieving High Strength in Commercial Mg Cast Alloys Through Large Strain Rolling. Mater. Lett. 59:3299–3303

    Article  CAS  Google Scholar 

  5. Q.L. Zhang, C. Lu, Y.P. Zhu, and W.J. Ding, 轧 制 方 式 对 AZ31 镁合金薄板组织和性能的影响 (Effect of Rolling Method on Microstructure and Properties of AZ31 Magnesium Alloy thin Sheet). Chin. J. Nonferrous Metals, 2004, 14(3), p 391–397 (in Chinese)

    Google Scholar 

  6. Iwanaga K., Tashiro H., Okamoto H., Shimizu K. (2004) Improvement of Formability from Room Temperature to Warm Temperature in AZ-31 Magnesium Alloy. J. Mater. Processing Technol. 155–156:1313–1316

    Article  CAS  Google Scholar 

  7. Mukai T., Yamanoi M., Watanabe H., Higashi K. (2001) Ductility Enhancement in AZ31 Magnesium Alloy by Controlling its Grain Structure. Scripta Mater. 45:89–94

    Article  CAS  Google Scholar 

  8. Agnew S.R., Horton J.A., Lillo T.M., Brown D.W. (2004) Enhanced Ductility in Strongly Textured Magnesium Produced by Equal Channel Angular Processing. Scripta Mater. 50:377–381

    Article  CAS  Google Scholar 

  9. Koike J. (2003) New Deformation Mechanisms in Fine-Grain Mg Alloys. Mater. Sci. Forum 419–422:189–194

    Article  Google Scholar 

  10. Kim W.J., Hong S.I., Kim Y.S., Min S.H., Jeong H.T., Lee J.D. (2003) Texture Development and Its Effect on Mechanical Properties of an AZ61 Mg Alloy Fabricated by Equal Channel Angular Pressing. Acta Mater. 51:3293–3307

    Article  CAS  Google Scholar 

  11. J.A. del Valle, F. Carreño, and O.A. Ruano, Influence of Texture and Grain Size on Work Hardening and Ductility in Magnesium-based Alloys Processed by ECAP and Rolling. Acta Mater., 2006, 54, p 4247–4259

    Google Scholar 

  12. Yoshida Y., Cisar L., Kamado S., Kojimo Y. (2003) Effect of Microstructural Factors on Tensile Properties of an ECAE-Processed AZ31 Magnesium Alloy. Materialia Transaction 44(4):468–475

    Article  CAS  Google Scholar 

  13. Kim H.K., Kim W.J. (2004) Microstructural Instability and Strength of an AZ31 Mg Alloy after Severe Plastic Deformation. Mater. Sci. Eng. A385:300–308

    CAS  Google Scholar 

  14. Watanbe H., Mukai T., Ishikawa K. (2004) Differential Speed Rolling of an AZ31 Magnesium Alloy and the Resulting Mechanical Properties. J. Mater. Sci. 39:1477–1480

    Article  Google Scholar 

  15. Kim S.H., You B.S., Yim C.D., Seo Y.M. (2005) Texture and Microstructure Changes in Asymmetrically Hot Rolled AZ31 Magnesium Alloy Sheets. Mater. Lett. 59:3876–3880

    Article  CAS  Google Scholar 

  16. Chino Y., Mabuchi M., Kishihara R., Hosokawa H., Yamada Y., Wen C.E., Shimojima K., Iwasaki H. (2002) Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single Roller Drive Rolling. Mater. Trans. 43(10):2554–2560

    Article  CAS  Google Scholar 

  17. Saito Y., Utsunomiya H., Suzuki H. (2000) Improvement in the r-value of Aluminum Strip by a Continuous Shear Deformation Process. Scripta Mater. 42:1139–1144

    Article  CAS  Google Scholar 

  18. Utsunomiya H., Hatsuda K., Sakai T., Saito Y. (2004) Continuous Grain Refinement of Aluminum Strip by Conshearing. Mater. Sci. Eng. A372:199–206

    CAS  Google Scholar 

  19. Lee J.C., Seok H.K., Han J.H., Chung Y.H. (2001) Controlling the Textures of the Metal Strips via the Continuous Confined Strip Shearing (C2S2) Process. Mater. Res. Bull. 36:997–1004

    Article  CAS  Google Scholar 

  20. Lee J.C., Seok H.K., Suh J.Y. (2002) Microstructural Evolutions of the Al Strip Prepared by Cold Rolling and Continuous Equal Channel Angular Pressing. Acta Mater., 50:4005–4019

    Article  CAS  Google Scholar 

  21. Nam C.Y., Han J.H., Chung Y.H., Shin M.C. (2003) Effect of Precipitates on Microstructural Evolution of 7050 Al Alloy Sheet During Equal Channel Angular Rolling. Mater. Sci. Eng. A347:253–257

    CAS  Google Scholar 

  22. Park J.W., Kim J.W., Chung Y.H. (2004) Grain Refinement of Steel Plate by Continuous Equal-Channel Angular Process. Scripta Mater. 51:181–184

    Article  CAS  Google Scholar 

  23. Y.Q. Cheng, Z.H. Chen, W.J. Xia, and D.F. Fu, 等径角轧制 AZ31 镁合金板材组织与性能研究 (Microstructures and Mechanical Properties of AZ31 Magnesium Alloy Sheet Processed by Equal Channel Angular Rolling), Chin. J. Nonferrous Metals, 2005, 15(9), p 1369–1375 (in Chinese)

    Google Scholar 

  24. Z.H. Chen, Y.Q. Cheng, and W.J. Xia, Effect of Equal Channel Angular Rolling Pass on Microstructure and Properties of Magnesium Alloy Sheets. Mater. Manufacturing Processes, 2007, 22, p 51–56

    Google Scholar 

  25. Luis Pérez C.J. (2004) On the Correct Selection of the Channel Die in ECAP Processes. Scripta Mater. 50:387–393

    Article  CAS  Google Scholar 

  26. Iwahashi Y., Wang J.T., Horita Z., Nemoto M., Langdon T.G. (1996) Principle of Equal-Channel Angular Pressing for the Processing of Ultra-fine Grained Materials. Scripta Mater. 35(2):143–146

    Article  CAS  Google Scholar 

  27. Yoshida Y., Cisar L., Kamado S., Koike J., Kojima Y. (2003) Texture Development of AZ31 Magnesium Alloy during ECAE Processing. Mater. Sci. Forum 419–422:533–538

    Google Scholar 

  28. Pérez-Prado M.T., Ruano O.A. (2002) Texture Evolution During Annealing of Magnesium AZ31 Alloy. Scripta Mater. 46:149–155

    Article  Google Scholar 

  29. Yang P., Cui F., Ma S.C., Gottstein G. (2003) Influence of Initial Textures on Dynamic Recrystallization and Textures in AZ31 Magnesium Alloys. Trans. Nonferrous Met. Soc. China 13(3):504–508

    CAS  Google Scholar 

  30. Couret A., Cailiard D. (1985) An in situ Study of Prismatic Glide in Magnesium – I. The Rate Controlling Mechanism. Acta Metal. 33(8):1447–1454

    Article  CAS  Google Scholar 

  31. Koike J., Ohyama R., Kobayashi T., Suzuki M., Maruyama K. (2003) Grain-boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K. Mater. Trans. 44(4):445–451

    Article  CAS  Google Scholar 

  32. Wagener H.W., Hartmann J.H., Reinhard F. (2003) Deep Drawing and Impact Extrusion of Magnesium Alloys at Room Temperature. Adv. Eng. Mater. 5(4):237–242

    Article  CAS  Google Scholar 

  33. Y. Q. Cheng, Z.H. Chen, and W.J. Xia, Drawability of AZ31 Magnesium Alloy Sheet Produced by Equal Channel Angular Rolling at Room Temperature. Mater. Charact., 2007, 58, p 617–622

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y.Q., Chen, Z.H., Xia, W.J. et al. Improvement of Drawability at Room Temperature in AZ31 Magnesium Alloy Sheets Processed by Equal Channel Angular Rolling. J. of Materi Eng and Perform 17, 15–19 (2008). https://doi.org/10.1007/s11665-007-9103-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9103-6

Keywords

Navigation