Skip to main content

Advertisement

Log in

High Temperature Creep Deformation Mechanisms of a Hot Corrosion-Resistant Nickel-based Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Creep properties of the experimental superalloy were investigated in the temperature range 1073–1223 K and stress range 110–550 MPa. The observations of dislocation structures during different creep conditions reveal that in the high stress region, particle-shearing mechanisms including stacking fault formation and antiphase boundary creation are operative and in the low stress region, the dislocation climb mechanism is dominant. From the plot of minimum creep rate versus applied stress, a very low stress region with exponent n  <  2, which is related to diffusional creep, is found. Based on the experimental results, a stress–temperature creep deformation mechanism map for the alloy is constructed. On the basis of particle hardening theories and various dislocation-creep theories, the dislocation-creep transitions in terms of internal stress are discussed and calculated threshold stresses of various creep deformation mechanisms indicates that the particle shearing is easier to operate than Orowan looping at high stresses, and general climb is easy to happen at low stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, and T. Kobayashi, Creep Deformation Mechanisms in Some Modern Single–Crystal Superalloys, Superalloys, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, Ed., TMS, Warrendale, PA, 2004, p 189–195

    Google Scholar 

  2. F.R.N. Nabarro and H.L. de Villiers, Introduction to Creep-resistant Alloys, Physics of Creep, Taylor & Francis Ltd., London, 1995, p 1–14

    Google Scholar 

  3. Reed R.C., Matan N., Cox D. C., Rist M.A., Rae C.M.F. (1999) Creep of CMSX-4 Superalloy Single Crystals: Effects of Rafting at High Temperature. Acta Mater. 47: 3367–3381

    Article  CAS  Google Scholar 

  4. R.F. Decker and C.T. Sims, The Metallurgy of Nickel-Base Alloy, The Superalloys, C.T. Sims and W.C. Hagel, Ed., John Wiley & Sons Inc., 1972, p 33–77

  5. Sajjadi S.A., Nategh S. (2001) A High Temperature Deformation Mechanism Map for the High Performance Ni-based Superalloy GTD-111. Mater. Sci. Eng. A. 307: 158–164

    Article  Google Scholar 

  6. L.M. Brown and R.K. Ham, Dislocation-Particle Interaction, Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, Ed., Elsevier, Amsterdam, 1971, p 9–12

    Google Scholar 

  7. F. Garofalo, Modes of Deformation in Creep, Fundamentals of Creep and Creep-Rupture in Metals, The Macmillan Co., New York, 1965, p 136–145

    Google Scholar 

  8. W.I. Mitchel, Age Hardening of High Temperature Nickel Base Alloys, Z. Metallk., 1966, 57, p 586 (In German)

    Google Scholar 

  9. T.C. Chou and Y.T. Chou, High-temperature Ordered Inter-metallic Alloys, Materials Research Society Symposia Proceedings,Vol 39, C.C. Koch, C.T. Lin, and N.S. Stoloff, Ed., MRS, Pittsburgh, PA, 1985, p 461

    Google Scholar 

  10. Mukherji D., Jiao F., Chen W., Wahi R.P., (1991) Stacking Fault Formation in γ′ Phase During Monotonic Deformation of IN738LC at Elevated Temperatures. Acta metal Mater. 39: 515–1524

    Article  Google Scholar 

  11. Mukherji D., Wahi R.P. (1996) Some Implications of the Particle and Climb Geometry on the Climb Resistance in Nickel-based Superalloys. Acta Metal Mater. 44: 529–1539

    Article  Google Scholar 

  12. öseler R.R, Arzt E. (1988) The Kinetics of Dislocation Climb over Hard Particles—II. Effects of an Attractive Particle-Dislocation Interaction. Acta Metall. 36: 1053–1060

    Article  Google Scholar 

  13. J.T. Guo, C. Yuan, H.C. Yang, V. Lupinc, and M. Maldini, Creep-Rupture Behavior of a Directionally Solidified Nickel-based Superalloy, Metall. Mater. Trans. A, 2001, 2A, p 1103–1110

    Article  Google Scholar 

  14. Williams K.R., Wilshire B. (1973) On the Stress- and Temperature-dependence of Creep of Nimonic 80 A. Met Sci. 7: 176

    Article  CAS  Google Scholar 

  15. Dennision J.P., Holmes P.D., Wilshire B. (1978) The Creep and Fracture Behaviour of the Cast Nickel-based Superalloy IN 100. Mater. Sci. Eng. 33: 35–47

    Article  Google Scholar 

  16. V. Lupinc, Creep: Introduction and Phenomenology, Creep and Fatigue in High Temperature Alloys, J. Bressers, Ed., Applied Science Publishers Ltd., England, 1982, p 7

    Google Scholar 

  17. O.D. Sherby, O.A. Ruano, and J. Wadsworth, Deformation Mechanisms in Crystalline Solids and Newtonian Viscous Behavior, Creep Behaviour of Advanced Materials for 21st Century, R.S. Mishra, A.K. Mukherjee, and K. Linga Murty, Ed., TMS, Warrendale, PA, 1999, p 397

    Google Scholar 

  18. B. Wilshire, Case Studies in Diffusional Creep, Creep Behaviour of Advanced Materials for 21st Century, R.S. Mishra, A.K. Mukherjee, and K. Linga Murty, Ed., TMS, Warrendale, PA, 1999, p 451

    Google Scholar 

  19. J. Bilde-Søensen and P.A. Thorsen, The Role of Interfacial Structure in Diffusional Creep, Boundaries and Interfaces in Materials, R.C. Pond, W.A.T. Clark, A.H. King, and D.B. Williams, Ed., TMS, Warrendale, PA, 1998, p 179

    Google Scholar 

  20. Ashby M.F. (1969) On Interface-Reaction Control of Nabarro–Herring Creep and Sintering. Scripta Metall. 3: 837

    Article  CAS  Google Scholar 

  21. Gleeither H., (1979) Grain Boundaries as Point Defect Sources or Sinks—Diffusional Creep. Acta Metall. 27: 187

    Article  Google Scholar 

  22. J.A. Daleo and J.R. Wilon, “GTD111 Alloy Material Study”, Presented at The International Gas Turbine and Aeroengine Congress and Exhibition, Birmingham, UK, 1996

  23. Yang Z., Xiao Y., Shih C. (1987) High Temperature Creep of Ni–Cr–Co Alloys and the Effect of Stacking Fault Energy. Z. Metallkde. 78: 339–343

    CAS  Google Scholar 

  24. Pollock T.M., Argon A.S. (1992) Creep Rresistance of CMSX-3 Nickel Base Superalloy Single Crystals. Acta Metall Mater. 40: 1–30

    Article  CAS  Google Scholar 

  25. Mukherji D., Gabrisch H., Chen W., Fecht H.J., Wahi R.P. (1997) Mechanical Behaviour and Microstructural Evolution in the Single Crystal Superalloy SC16. Acta Mater. 45: 3143

    Article  CAS  Google Scholar 

  26. Leverant G.R., Kear B.H. (1973) Creep of Precipitation-Hardened Nickel-based Alloy Single Crystals at High Temperatures. Metall. Trans. 4: 355–362

    Article  CAS  Google Scholar 

  27. Condat M., Decamps B. (1987) Shearing of γ′ Precipitates by Single a/2 110-line Matrix Dislocations in a γγ′ Ni-based Superalloy. Scripta Metall. 21: 607

    Article  CAS  Google Scholar 

  28. Kear B.H., Oblak J.M. (1974) Deformation Modes in γ′ Precipitation Hardened Nickel-based Alloys. J Phsy. 7: 35–45

    Google Scholar 

  29. Sass V., Glatzel U., Feller-Kniepmerier M. (1996) Anisotropic Creep Properties of the Nickel-based superalloy CMSX-4. Acta Mater. 44: 1967–1977

    Article  CAS  Google Scholar 

  30. Link T., Feller-Kniepmerier M. (1992) Shear Mechanisms of the γ′ Phase of Single-crystal Superalloys and their Relation to Creep. Met. Trans. 23A: 99–105

    Article  CAS  Google Scholar 

  31. H. Gleiter and E. Hornbogen, Theorie der Wechselwirkung von Versetzungen mit kohärenten geordneten Zonen (II), Phys. Stat. Sol., 1965, Vol 12, p 251 (In German)

    Article  CAS  Google Scholar 

  32. H.J. Frost and M.F. Ashby, Deformation Mechanisms and Deformation-Mechanism Maps, Deformation Mechanism Maps, Pergamon Press, Elmsford, NY, 1982, p 3–20

    Google Scholar 

  33. Labusch R., Schwarz R.B. (1978) Dynamic Simulation of Solution Hardening. J Appl Phys. 49: 5174–5187

    Article  Google Scholar 

  34. Huther W., Reppich B. (1978) Interaction of Dislocations with Coherent, Stree-Free Ordered Particles. Z. Metallk. 69: 628–634

    Google Scholar 

  35. Reppich B., Schepp P., Wehner G.(1982) Some New aspects Concerning Particle Hardening Mechanisms in γ′ Precipitating Nickel-based alloys—II Experiments. Acta Metall. 30: 95–104

    Article  CAS  Google Scholar 

  36. Shewfelt R.S.W., Brown L.M. (1977) High-temperature Strength of Dispersion Hardened Single Crystals. Phil. Mag. 35: 945–962

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.S. Huo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, J., Gou, J., Zhou, L. et al. High Temperature Creep Deformation Mechanisms of a Hot Corrosion-Resistant Nickel-based Superalloy. J of Materi Eng and Perform 16, 55–62 (2007). https://doi.org/10.1007/s11665-006-9008-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-006-9008-9

Keywords

Navigation