Skip to main content
Log in

Phase equilibria in In-Metal-As systems: Systematic trends in phase diagram topology and implications for the development of contact materials to InAs

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Isothermal phase equilibria are established in the InAs-rich regions of 16 In-M-As ternary systems, where “M” denotes a transition or noble metal. These new data, combined with work previously reported in the literature, provide a nearly complete picture of phase equilibria in In-M-As systems. The topologies of the In-M-As phase diagrams are found to vary systematically according to the position of M in the periodic table. This correlation may be rationalized using experimental thermodynamic data found in the literature, and reflects a systematic dependency of the relative thermodynamic stabilities of transition and noble metal indides and arsenides on atomic number of the metal. These phase diagram data are also utilized to select materials that are suitable as contact metallizations to InAs. Based on the criteria of thermodynamic equilibrium, ease of fabrication, and high melting point, W, Re, Os, RhIn3, PdIn and PtIn2 are identified as the most promising potential contact materials to InAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Palmstrøm and T. Sands, Contacts to Semiconductors: Fundamentals and Technology, ed. L.J. Brillson (Park Ridge, NJ: Noyes Publ., 1993).

    Google Scholar 

  2. A.G. Milnes and A.Y. Polyakov, Mater. Sci. Eng. B 18, 237 (1993).

    Article  Google Scholar 

  3. V. Swaminathan, Indium Phosphide and Related Materials: Processing, Technology and Devices, ed. A. Katz (Boston, MA: Artech House, 1992).

    Google Scholar 

  4. S.E. Mohney, J. Electron. Mater. 27, 24 (1998).

    CAS  Google Scholar 

  5. D. Swenson and Y.A. Chang, Mater. Sci. Eng. B 39, 52 (1996).

    Article  Google Scholar 

  6. A. Muller and M. Wilhelm, J. Phys. Chem. Solids 26, 2029 (1965).

    Article  Google Scholar 

  7. G.F. Gubskaya, P.-N. Wang, N.P. Luzhnaya, and D.L. Kudryavtsev, Inorg. Mater. I 188 (1965).

  8. M. El-Boragy and K. Schubert, Z. Metallkd. 70, 579 (1970).

    Google Scholar 

  9. C.T. Tsai and R.S. Williams, J. Mater. Res. 1, 352 (1986).

    CAS  Google Scholar 

  10. J. Klingbeil and R. Schmid-Fetzer, CALPHAD 18, 429 (1994).

    Article  CAS  Google Scholar 

  11. D. Swenson, Sutopo, and Y.A. Chang, Mater. Chem. Phys. 44, 215 (1996).

    Article  Google Scholar 

  12. D. Swenson, Sutopo, and Y.A. Chang, J. Alloys Comp. 216, 67 (1994).

    Article  Google Scholar 

  13. D. Swenson, Sutopo, and Y.A. Chang, Z. Metall Ed. 85, 228 (1994).

    Google Scholar 

  14. D. Swenson and Y.A. Chang, Mater. Sci. Engin. B 39, 232 (1996).

    Article  Google Scholar 

  15. D. Swenson and Y.A. Chang, Mater. Sci. Engin. B 22, 267 (1994).

    Article  Google Scholar 

  16. Joint Committee on Powder Diffraction Standards (Newtown Square, PA: International Center for Diffraction Data).

  17. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd Edition (Materials Park, OH: ASM International, 1990).

    Google Scholar 

  18. M.D. Deal, R.A. Gasser, and D.A. Stevenson, J. Phys. Chem. Solids 46, 859 (1985).

    Article  CAS  Google Scholar 

  19. M.F. Hagedorn and W. Jeitschko, J. Solid State Chem. 119, 344 (1995) and references contained therein.

  20. R. Beyers, K.B. Kim, and R. Sinclair, J. Appl. Phys. 61, 2195 (1987).

    Article  CAS  Google Scholar 

  21. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th ed. (Oxford, U.K.: Pergamon Press, 1979).

    Google Scholar 

  22. C. Chatillon, I. Ansara, A. Watson, and B.B. Argent, CALPHAD 14, 203 (1990).

    Article  CAS  Google Scholar 

  23. J.J. Murray and R.D. Heyding, Can. J. Chem. 45, 2675 (1967).

    Article  CAS  Google Scholar 

  24. M.E. Straumanis and S.M. Riad, Trans. Metall. Soc. AIME, 233, 964 (1965).

    CAS  Google Scholar 

  25. G.A. Eade and W. Hume-Rothery, Z. Metallkd. 50, 123 (1959).

    CAS  Google Scholar 

  26. R. Schmid-Fetzer, J. Electron. Mater. 17, 193 (1988).

    CAS  Google Scholar 

  27. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in Metals: Transition Metal Alloys (Amsterdam, Netherlands: North-Holland Publishers, 1988).

    Google Scholar 

  28. Q. Han and R. Schmid-Fetzer, Mater. Sci. Engin. B 22, 141 (1994).

    Article  Google Scholar 

  29. P. Anres, M. Gaune-Escard, E. Hayer, and J.P. Bros, J. Alloys Comp. 221, 143 (1995).

    Article  CAS  Google Scholar 

  30. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Geiser, and K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM, 1973).

    Google Scholar 

  31. N.A. Gokcen, Bull. Alloy Phase Diagr. 10, 11 (1989).

    CAS  Google Scholar 

  32. S. Meschel and O. Kleppa, J. Alloys Comp. 197, 75 (1993).

    Article  CAS  Google Scholar 

  33. D. Swenson, Ph.D. Thesis, University of Wisconsin-Madison (1994).

  34. J.Y. Josefowicz and D.B. Rensch, J. Vac. Sci. Technol. B 5, 1707 (1987).

    Article  CAS  Google Scholar 

  35. D.Y. Chen, Y.A. Chang, D. Swenson, and F.R. Shepherd, J. Mater. Res. 13, 959 (1998).

    CAS  Google Scholar 

  36. J.S. Chen, A. Bachli, M.-A. Nicolet, L. Baud, C. Jaussaud, and R. Madar, Mater. Sci. Eng. B 29, 185 (1995).

    Article  Google Scholar 

  37. A. Smirnov, P.A. Tove, J. de Sousa Pires, and H. Norde, Appl. Phys. Lett. 36, 313 (1980).

    Article  CAS  Google Scholar 

  38. C.S. Petersson, J.E.E. Baglin, J.J. Dempsey, F.M. d’Heurle, and S.J. La Placa, J. Appl. Phys. 53, 4866 (1982).

    Article  CAS  Google Scholar 

  39. S.E. Mohney and Y.A. Chang, Advanced Metallization and Processing for Semiconductor Devices and Circuits-II, ed. A. Katz, S.P. Murarka, Y.I. Nissim, and J.M.E. Harper (Pittsburgh, PA: Mater. Res. Soc., 1992), p. 519.

    Google Scholar 

  40. H.G. Fu and T.S. Huang, Solid-State Electron. 38, 89 (1995).

    Article  CAS  Google Scholar 

  41. D.Y. Chen, Y.A. Chang, and D. Swenson, Appl. Phys. Lett. 68, 96 (1996).

    Article  CAS  Google Scholar 

  42. D.B. Ingerly, Y.A. Chang, N.R. Perkins, and T.F. Kuech, Appl. Phys. Lett. 70, 108 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swenson, D. Phase equilibria in In-Metal-As systems: Systematic trends in phase diagram topology and implications for the development of contact materials to InAs. J. Electron. Mater. 28, 894–901 (1999). https://doi.org/10.1007/s11664-999-0216-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-999-0216-6

Key words

Navigation