Skip to main content
Log in

Cathodoluminescence spectroscopy of deep defect levels at the ZnSe/GaAs interface with a composition-control interface layer

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work we investigate ZnSe/GaAs heterostructures with an additional 2 nm controlled interfacial layer (CIL) of Se- or Zn-rich composition to modify the band offset. The samples are analyzed as a function of annealing temperature by cathodoluminescence spectroscopy. The as-prepared samples show defect luminescence at ∼ 0.9 eV. With staged annealing at increasing temperatures, both the Zn-rich as well as the Se-rich interfacial layer exhibits luminescence at ∼ 1.9 eV, indicative of defect formation with an onset temperature of ∼400°C. Excitation-dependent spectroscopy provides evidence for defect formation near the interface, which extends into the ZnSe epilayer at higher temperatures. Compared to earlier work, where the threshold temperature for defect formation in bulk samples fabricated under Se-rich growth conditions occurs at temperatures as low as 325°C, the resistance to defect formation has now been improved to that of stoichiometric ZnSe. These results demonstrate that epitaxially grown CILs provide a means to alter ZnSe/GaAs band offsets without degrading the heterojunction’s resistance to defect formation at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunc and R.M. Martin, Phys. Rev. B 24, 3445 (1981).

    Article  CAS  Google Scholar 

  2. A. Franciosi and C. Van de Walle, Surf. Sci. Rep. 25, 1 (1996).

    Article  CAS  Google Scholar 

  3. R. Nicolini, L. Vanzetti, G. Mula, G. Bratina, L. Sorba, A. Franciosi, M. Peressi, S. Baroni, R. Resta, A. Baldereschi, J.E. Angelo, and W.W. Gerberich, Phys. Rev. Lett. 72, 294 (1994).

    Article  CAS  Google Scholar 

  4. G. Bratina, L. Vanzetti, A. Bonanni, L. Sorba, T. J. Pagell, A. Franciosi, T. Peluso, and L. Tapfer, J. Cryst. Growth 159, 703 (1996).

    Article  CAS  Google Scholar 

  5. S. Heun, J.J. Paggel, S. Rubini, L. Sorba, A. Franciosi, J.-M. Bonard, and J.-D. Ganiere, Appl. Phys. Lett. 70, 237 (1997).

    Article  CAS  Google Scholar 

  6. J. Ding, H. Jeon, T. Ishihara, and M. Hagerott, A.V. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, Phys. Rev. Lett. 69, 1707 (1992).

    Article  CAS  Google Scholar 

  7. J. Ding, M. Hagerott, T. Ishihara, and H. Jeon, and A.V. Nurmikko, Phys. Rev. B 47, 10528 (1993).

    Article  CAS  Google Scholar 

  8. R. Cingolani, R. Rinaldi, L. Calcagnile, P. Prete, P. Sciacovelli, L. Tapfer, L. Vanzetti, G. Mula, F. Bassani, L. Sorba, and A. Franciosi, Phys. Rev. B 49, 16769 (1994).

    Article  CAS  Google Scholar 

  9. R. Cingolani, M. Di Dio, M. Lomascolo, R. Rinaldi, P. Prete, L. Vasanelli, L. Vanzetti, F. Bassani, A. Bonanni, L. Sorba, and A. Franciosi, Phys. Rev. B 50, 12179 (1994).

    Article  CAS  Google Scholar 

  10. A.D. Raisanen, L.J. Brillson, L. Vanzetti, A. Bonanni, A. Franciosi, Appl. Phys. Lett. 66, 3301 (1995).

    Article  CAS  Google Scholar 

  11. A. Bonanni, L. Vanzetti, L. Sorba, A. Franciosi, M. Lomascolo, P. Prete, R. Cingolani, Appl. Phys. Lett. 66, 1092 (1995).

    Article  CAS  Google Scholar 

  12. A. Krost, W. Richter, D.R.T. Zahn, and O. Brafman, Semicond. Sci. Technol. 6, A109 (1991).

    Google Scholar 

  13. J. Qiu, D.R. Menke, M. Kobayashi, R.L. Gunshor, D. Li, Y. Nakamura, and N. Otsuka, Appl. Phys. Lett. 58, 2788 (1991).

    Article  CAS  Google Scholar 

  14. H.H. Farell, M.C. Tamargo, and J.L. de Miguel, Appl. Phys. Lett. 58, 355 (1991).

    Article  Google Scholar 

  15. L. Kassel, H. Abad, J.W. Garland, P.M. Raccah, J.E. Potts, M.A. Haase, and H. Cheng, Appl. Phys. Lett. 56, 42 (1990).

    Article  CAS  Google Scholar 

  16. A. Raisanen, L.J. Brillson, L. Vanzetti, A. Bonanni, and A. Franciosi, J. Vac. Sci. Technol. B 13, 1705 (1995).

    Article  CAS  Google Scholar 

  17. L.J. Brillson, X. Yang, A.D. Raisanen, A. Franciosi, L. Vanzetti, and L. Sorba, Appl. Surf. Sci. 123–124, 289 (1998).

    Article  Google Scholar 

  18. A. Raisanen, L.J. Brillson, A. Franciosi, R. Nicolini, L. Vanzetti, and L. Sorba, J. Electron. Mater. 24, 163 (1995).

    CAS  Google Scholar 

  19. J. Gutowski, N. Presser, and G. Kudlek, Phys. Stat. Sol. A 120, 11 (1990).

    Article  CAS  Google Scholar 

  20. M. Yamaguchi, A. Yamamoto, and M. Kondo, J. Appl. Phys. 48, 5237 (1977).

    Article  CAS  Google Scholar 

  21. B. Yacobi and D. Holt, Cathodoluminescence Microscopy of Inorganic Solids (Plenum, New York, 1990), p. 58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, J., Young, A.P., Levin, T.M. et al. Cathodoluminescence spectroscopy of deep defect levels at the ZnSe/GaAs interface with a composition-control interface layer. J. Electron. Mater. 28, 881–886 (1999). https://doi.org/10.1007/s11664-999-0214-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-999-0214-8

Key words

Navigation