Skip to main content
Log in

Overview of fatigue performance of Cu processed by severe plastic deformation

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study investigates discrepancies regarding cyclic softening of Cu processed by severe plastic deformation (SPD). All samples softened if the microhardnesses before and after fatiguing are compared. However, the effect decreases if the strain amplitude is small, Δεp <1 × 10−3). Samples with equiaxed subgrains were more resistant to softening and thermal recovery. All samples had “persistent” shear bands except those tested at the highest amplitudes, Δεp >1 × 10−2. Cu processed by SPD exhibits an enhanced fatigue life at low amplitudes. However, low thermal stability, potential for softening, and poor low-cycle properties discredit this advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Weertman, D. Farkas, K. Hernker, H. Kung, M. Mayo, R. Mitra, and H. Van Swygenhoven, MRS Bulletin 24, 44 (1999).

    CAS  Google Scholar 

  2. R.W. Seigel and G.E. Fouger, Nanostruct. Mater. 5, 205 (1995).

    Article  Google Scholar 

  3. R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, and B. Baudelet, Scripta Metall. Mater. 27, 855 (1992).

    Article  CAS  Google Scholar 

  4. A.B. Witney, P. G. Sanders, J. R. Weertman, and J. A. Eastman, Scripta Metal. 33, 2025 (1995).

    Article  CAS  Google Scholar 

  5. A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, V. Stolyarov, and R. Valiev, Scripta Mater. 36, 1345 (1997).

    Article  CAS  Google Scholar 

  6. S.R. Agnew and J.R. Weertman, Mater. Sci. Eng. A244, 145 (1998).

    CAS  Google Scholar 

  7. J. Morrow, Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378, (Philadelphia, PA: ASTM, 1965), pp. 48–87).

    Google Scholar 

  8. C.E. Feltner and C. Laird, Acta Metall. 15, 1621 (1967).

    Article  CAS  Google Scholar 

  9. C.E. Feltner and C. Laird, Acta Metall. 15, 1633 (1967).

    Article  CAS  Google Scholar 

  10. G.E. Dieter, Mechanical Metallurgy, 3d ed. (New York: McGraw-Hill, 1986), p. 290.

    Google Scholar 

  11. A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, and R. Valiev, Materials Forum 269–272, 987 (1998).

    Google Scholar 

  12. J. Polák, K. Obrtlík, M. Hájek, and A. Vašek, Mat. Sci. Eng. A151, 19 (1992).

    Google Scholar 

  13. J. Polák and M. Klesnil, Mat. Sci. Eng. 63, 189 (1984).

    Article  Google Scholar 

  14. V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, and V.I. Kopylov, Russian Metallurgy (English trans.) 1, 115 (1981).

    Google Scholar 

  15. V.M. Segal, Mat. Sci. Eng. A197, 157 (1995).

    CAS  Google Scholar 

  16. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Mat. Sci. Eng. A137, 35 (1991).

    CAS  Google Scholar 

  17. V.M. Segal, R.E. Goforth, and K.T. Hartwig, U.S. Patent 5,400,633 (1995).

    Google Scholar 

  18. A. Abel, Materials Forum 10, 11 (1987).

    CAS  Google Scholar 

  19. A. Abel, Mat. Sci. & Eng. 36, 117 (1978).

    Article  CAS  Google Scholar 

  20. A. Abel, M. Wilhelm, and V. Gerold, Mat. Sci. Eng. 37, 187 (1979).

    Article  CAS  Google Scholar 

  21. Y. Iwanishi, Z. Horita, M. Nemoto, and T. Langdon, Acta Mater. 46, 3317 (1998).

    Article  Google Scholar 

  22. R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet, Acta Metall. 42, 2467 (1994).

    Article  CAS  Google Scholar 

  23. S.R. Agnew, U.F. Kocks, K.T. Hartwig, and J.R. Weertman, Proc. 19th Risø Inter. Symp. Mater. Sci., ed. J.V. Carstensen et al. (1998), p. 201.

  24. P. Lukas and L. Kunz, Mater. Sci. Eng. 85, 67 (1987).

    Article  CAS  Google Scholar 

  25. A.W. Tompson and W.A. Backofen, Acta Metall. 19, 597 (1971).

    Article  Google Scholar 

  26. J.F. Tavernelli and L.F. Coffin, Trans. ASME 51, 483 (1959).

    Google Scholar 

  27. S.R. Agnew, Ph.D. thesis, Northwestern University (1998).

  28. H. Shirai, Ph.D. thesis, Northwestern University (1984).

  29. Sh.Kh. Khannanov, Phys. Met. Metallogr. 82, 263 (1996).

    Google Scholar 

  30. Y.J.M. Bruchet, Key Eng. Mater. 103, 21 (1995).

    Article  Google Scholar 

  31. M. Zaiser, M. Avlonitis, and E.C. Aifantis, Acta Mater. 46, 4143 (1998).

    Article  CAS  Google Scholar 

  32. M.V. Glazov and C. Laird, Acta Metall. Mater. 43, 2849 (1995).

    Article  CAS  Google Scholar 

  33. T. Ogura, K. Fukushirna, and T. Masumoto, Scripta Metall. 9, 979 (1975).

    Article  CAS  Google Scholar 

  34. T. Ogura, K. Fukushima, and T. Masumoto, Mat. Sci. Eng. 23, 2029 (1976).

    Article  Google Scholar 

  35. H.S. Chen, Mater. Sci. Eng. 25, 59 (1976).

    Article  CAS  Google Scholar 

  36. C.A. Pampillo and H.S. Chen, Mater. Sci. Eng. 13, 181 (1974).

    Article  CAS  Google Scholar 

  37. J.E. Carsley, W.W. Milligan, S.A. Hackney, and E.C. Aifantis, Metall. Mater. Trans. A26, 2479 (1995).

    Google Scholar 

  38. X.H. Zhu, J.E. Carsley, W.W. Milligan, and E.C. Aifantis, Scripta Mater. 36, 721 (1997).

    Article  CAS  Google Scholar 

  39. J.E. Carsley, W.W. Milligan, X.H. ZhLi, and E.C. Aifantis, Scripta Mater. 36, 727 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnew, S.R., Vinogradov, A.Y., Hashimoto, S. et al. Overview of fatigue performance of Cu processed by severe plastic deformation. J. Electron. Mater. 28, 1038–1044 (1999). https://doi.org/10.1007/s11664-999-0181-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-999-0181-0

Key words

Navigation