Advertisement

Journal of Electronic Materials

, Volume 28, Issue 5, pp 548–552 | Cite as

Quantitative mobility spectrum analysis (QMSA) for hall characterization of electrons and holes in anisotropic bands

  • I. Vurgaftman
  • J. R. Meyer
  • C. A. Hoffman
  • S. Cho
  • J. B. Ketterson
  • L. Faraone
  • J. Antoszewski
  • J. R. Lindemuth
Special Issue Paper

Abstract

An extension of the quantitative mobility spectrum analysis (QMSA) procedure, which determines free electron and hole densities and mobilities from magnetic-field-dependent Hall and resistivity measurements, to materials exhibiting anisotropic conduction is presented. As test cases, the fully computer-automated procedure is used to analyze magnetotransport data from Bi thin films and Bi/CdTe superlattices. Using the results of the QMSA procedure, the thermoelectric properties of these films can be accurately modeled. As a second exmaple, an electron mobility anisotropy ratio of ≈4.5 is derived from the QMSA treatment of the Hall data for bulk Si samples.

Key words

Anisotropic bands Bi/CdTe superlattices Bi films magnetotransport quantitative mobility spectrum analysis (QMSA) Si thermoelectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Antoszewski, D.J. Seymour, L. Faraone, J.R. Meyer and C.A. Hoffman, J. Electron. Mater. 24, 1255 (1995).Google Scholar
  2. 2.
    J.R. Meyer, C.A. Hoffman, F.J. Bartoli, J. Antoszewski, L. Faraone, S.P. Tobin, P.W. Norton, C.K. Ard, D.J. Reese, L. Colombo and P.K. Liao, J. Electron. Mater. 25, 1157 (1996).Google Scholar
  3. 3.
    J.R. Meyer, C.A. Hoffman, J. Antoszewski and L. Faraone, J. Appl. Phys. 81, 709 (1997).CrossRefGoogle Scholar
  4. 4.
    J.R. Meyer, C.A. Hoffman, F.J. Bartoli, D.A. Arnold, S. Sivananthan and J.P. Faurie, Semicond. Sci. Technol. 8, 805 (1993).CrossRefGoogle Scholar
  5. 5.
    I. Vurgaftman, J.R. Meyer, C.A. Hoffman, D. Redfern, J. Antoszewski, L. Faraone and J.R. Lindemuth, J. Appl. Phys. 73, 2857 (1998).Google Scholar
  6. 6.
    S.J. Allen, Jr., F. DeRosa, C.J. Palmstrom and A. Zrenner, Phys. Rev. B 43, 9599 (1991).CrossRefGoogle Scholar
  7. 7.
    J.A. van Hulst, H.M. Jaeger and S. Radelaar, Phys. Rev. B 52, 5953 (1995).CrossRefGoogle Scholar
  8. 8.
    W.A. Beck and J.R. Anderson, J. Appl. Phys. 62, 541 (1987).CrossRefGoogle Scholar
  9. 9.
    For a review of group V semimetals, see J.-P. Issi, Aust. J. Phys. 32, 585 (1979).Google Scholar
  10. 10.
    G.A. Saunders and Z. Sümengen, Proc. R. Soc. Lond. A 329, 453 (1972).CrossRefGoogle Scholar
  11. 11.
    B. Abeles and S. Meiboom, Phys. Rev. 101, 544 (1956).CrossRefGoogle Scholar
  12. 12.
    J.-P. Michenaud and J.-P. Issi, J. Phys. C 5, 3061 (1972); I.F. I. Mikhail, O.P. Hansen and H. Nielsen, J. Phys. C 13, 1697 (1980).CrossRefGoogle Scholar
  13. 13.
    Yu.I. Ravich and A.V. Rapoport, Sov. Phys. Solid State 34, 960 (1992) [Fiz. Tverd. Tela (St. Petersburg)34, 1801 (1992)].Google Scholar
  14. 14.
    S. Cho, A. DiVenere, G.K. Wong, J.B. Ketterson, J.R. Meyer and C.A. Hoffman, Solid State Commun. 102, 673 (1997).CrossRefGoogle Scholar
  15. 15.
    D. Long and J. Myers, Phys. Rev. 115, 1107 (1959).CrossRefGoogle Scholar
  16. 16.
    E. Ohta and M. Sakata, Jpn. J. Appl. Phys. 17, 1795 (1978).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • I. Vurgaftman
    • 1
  • J. R. Meyer
    • 1
  • C. A. Hoffman
    • 1
  • S. Cho
    • 2
  • J. B. Ketterson
    • 2
  • L. Faraone
    • 3
  • J. Antoszewski
    • 3
  • J. R. Lindemuth
    • 4
  1. 1.Code 5613, Naval Research LaboratoryWashington, DC
  2. 2.Department of PhysicsNorthwestern UniversityEvanston
  3. 3.Department of Electrical and Electronic EngineeringThe University of Western AustraliaNedlandsAustralia
  4. 4.Lake Shore Cryotronics, Inc.Westerville

Personalised recommendations