Skip to main content
Log in

Junction depth measurement in HgCdTe using laser beam induced current (LBIC)

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A new, nondestructive junction depth measurement technique for HgCdTe photovoltaic devices is investigated. The technique uses a scanning laser microscope to obtain laser beam induced current (LBIC) data from which information regarding the junction depth is extracted, and is applicable to both homojunction and heterojunction diodes. For implanted heterojunction photodiodes, the position of the n-p junction relative to the heterojunction is an important factor determining completed device performance, with blind photodiodes resulting if the n-p junction is incorrectly placed. At present, the only methods available for junction depth determination (e.g., secondary ion mass spectroscopy and differential Hall) are destructive and not applicable as routine process monitoring techniques. It is envisaged that the development of a nondestructive routine process monitoring procedure will help improve yield and reduce the cost of HgCdTe photovoltaic devices. In this paper, experimental and theoretical results are presented in order to assess the sensitivity of the new technique to the effects of junction doping density, illumination wavelength, frontside/backside illumination, and test structure geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Kruse, Semiconductors and Semimetals, ed. R.K. Willardson and A.C. Beer, (New York: Academic Press, 1981), p. 1.

    Google Scholar 

  2. S.C. Shen, Micro. J. 25, 713 (1994).

    CAS  Google Scholar 

  3. A. Rogalski and J. Piotrowski, Prog. Quant. Electr. 12, 87 (1988).

    Article  CAS  Google Scholar 

  4. W.E. Tennant, C.A. Cockrum, J.B. Gipin, M.A. Kinch, M.B. Riene and R.P. Ruth, J. Vac. Sci. Technol. B 10, 1359 (1992).

    Article  CAS  Google Scholar 

  5. J. Bajaj, Phys. of Semicond. Dev., ed. V. Kumar and S.K. Agarwal, (1998), p. 1297.

  6. G. Bahir, Phys. of Semicond. Dev. ed. V. Kumar and S.K. Agarwal (1998), p. 697.

  7. J. Bajaj, W.E. Tennant, R. Zucca and S.J.C. Irvine, Semicond. Sci. Technol. 8, 872 (1993).

    Article  CAS  Google Scholar 

  8. J. Bajaj, L.O. Bubulac P.R. Newman and W.E. Tennant, J. Vac. Sci. Technol. A 5 (5),3186 (1987).

    Article  CAS  Google Scholar 

  9. J. Bajaj, W.E. Tennant and P.R. Newman, J. Vac. Sci. Technol. A 6 (4), 2757 (1988).

    Article  CAS  Google Scholar 

  10. J.F. Siliquini, J.M. Dell, C.A. Musca, E.P.G. Smith, L. Faraone and J. Piotrowski, Appl. Phys. Lett. 71 (1), (1998).

  11. J.T. Wallmark, Proc. IRE, April, 1956, 474 (1956).

  12. I. Chen, J. Appl. Phys. 64 (4), 2224 (1988).

    Article  Google Scholar 

  13. K.A. Fynn, J. Bajaj and L. Faraone, IEEE Trans. on Electron Dev. 42, 1775 (1995).

    Article  CAS  Google Scholar 

  14. SEMICAD DEVICE Version 1.2, Dawn Technologies Inc., Sunnyvale CA.

  15. MEDICI Version 4. 1.0, TMA Inc., Fremont, CA.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musca, C.A., Redfern, D.A., Smith, E.P.G. et al. Junction depth measurement in HgCdTe using laser beam induced current (LBIC). J. Electron. Mater. 28, 603–610 (1999). https://doi.org/10.1007/s11664-999-0042-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-999-0042-x

Key words

Navigation