Skip to main content
Log in

Antisite arsenic incorporation in the low temperature MBE of gallium arsenide: Physics and modeling

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A stochastic model for simulating the surface growth processes in the low temperature molecular beam epitaxy of gallium arsenide is developed to investigate the incorporation of antisite As and its dependence on the growth conditions including the dynamics of the physisorbed As on the surface. Three different kinetic models with a combination of surface kinetic processes such as incorporation of antisite As, evaporation of antisite As and incorporation of regular As. The kinetic model with all three surface processes was accepted as the best model due to its physical soundness and reasonableness of its model parameters. The arsenic flux, temperature, and growth rate dependences of antisite arsenic (AsGa) obtained from our simulation are in excellent agreement with the experimental results. The activation energy of 1.16 eV and a frequency factor of 4×1012/s for the evaporation of antisite arsenic obtained from our model are in good agreement with experimental and theoretical estimates. At a constant substrate temperature and growth rate, the antisite arsenic concentration increases with arsenic flux for low fluxes and saturates beyond a critical flux. The critical arsenic flux increases with temperature and the saturation value of the AsGa concentration decreases with temperature. As the arsenic flux increases, the coverage of the physisorbed layer increases and at a critical flux dictated by the fixed temperature and growth rate, the coverage saturates at its maximum value of unity (a complete monolayer) and hence the concentration of AsGa saturates. Lower AsGa concentration results at higher temperature due to more evaporation of AsGa. Additionally, an analytical model is developed to predict the AsGa concentration for various growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Melloch, N. Otsuka N. J.M. Woodall, A.C. Warren and J.L. Freeouf, Appl. Phys. Lett. 57, 1531 (1990).

    Article  CAS  Google Scholar 

  2. T. Murotani, F. Shimanoe and S. Mitsui, J. Cryst. Growth 45, 302 (1978).

    Article  CAS  Google Scholar 

  3. F.W. Smith, A.R. Calawa, C.L. Chen, M.J. Manfra and L.J. Mahoney, IEEE Electron Device Lett. EDL 9, 77 (1987).

    Article  Google Scholar 

  4. M. Kaminska, E.R. Weber, Z. Liliental-Weber, R. Leon and ZU. Rek, J. Vac. Sci. Technol. B 7, 943 (1989).

    Article  Google Scholar 

  5. X. Liu, A. Prasad, J. Nishio and E.R. Weber, Appl. Phys. Lett. 67 (2), 279 (1995).

    Article  CAS  Google Scholar 

  6. Maria Kaminska and Eicke R. Weber, Mater. Sci. Forum 83–87, 1033 (1992).

    Google Scholar 

  7. N.D. Jagger, P. Dreszer, N. Newman, A.K. Verma, Z. Liliental-Weber and E.R. Weber, Mater. Sci. Forum 143, 1599 (1994).

    Article  Google Scholar 

  8. N.D. Jagger, A.K. Verma, P. Dreszer, N. Newman, A. Liliental-Weber, M. Van Schilfgaarde and E.R. Weber, J. Electron Mater. 22 (12), 1499 (1993).

    Google Scholar 

  9. M. Missous, Microelectron. J. 27, 393 (1996).

    Article  CAS  Google Scholar 

  10. S. Fleischer, C.D. Beling, S. Fung, W.R. Nieveen, J.E. Squire, J.Q. Zheng and M. Missous, J. Appl. Phys. 81 (1), 190 (1997).

    Article  CAS  Google Scholar 

  11. M.R. Melloch, D.D. Nolte, J.M. Woodall, J.C.P. Chang, D.B. Janes and E.S. Harmon, Critical Rev. in Solid State and Mater. Rev. 21 (3), 189 (1996).

    Article  CAS  Google Scholar 

  12. David C. Look, Thin Solid Films 231, 61 (1993).

    Article  CAS  Google Scholar 

  13. M. Missous and S.O. Hagan, J. Appl. Phys. 75 (7), 3396 (1994).

    Article  CAS  Google Scholar 

  14. R. Venkatasubramanian, J. Mater. Res. 7, 1221 (1992).

    CAS  Google Scholar 

  15. R. Venkatasubramanian, J. Mater. Res. 7, 1236 (1992).

    Google Scholar 

  16. R. Venkatasubramanian and D.L. Dorsey, J. Vac. Sci. Technol. B 11, 253 (1993).

    Article  CAS  Google Scholar 

  17. R. Venkatasubramanian, S. Gorantla, S. Muthuvenkatraman and D.L. Dorsey, J. Appl. Phys. 80, 6219 (1996).

    Article  CAS  Google Scholar 

  18. R. Venkatasubramanian, Vamsee K. Pamula and Donald D. Dorsey, Appl. Surf. Sci. 104/105, 448 (1996).

    Article  CAS  Google Scholar 

  19. M. Luysberg, H. Sohn, A. Prasad, H. Fujioka, R. Klockenbrink and Eicke R. Weber, Semiconducting and Semi-insulating Materials, ed. C. Fontaine, (IEEE SIMC-9, 1996), p.21.

  20. T.B. Joyce and T.J. Bullough, J. Cryst. Growth 127, 265 (1993).

    Article  Google Scholar 

  21. M. Lagadas, Z. Hatzopoulos and K. Tsagaraki, J. Appl. Phys. 80 (8), 4377 (1996).

    Article  CAS  Google Scholar 

  22. J.I. Landman, C.G. Morgan, J.T. Schick, P. Papoulias and A. Kumar, Phys. Rev. B. 55, 15581 (1997).

    Article  CAS  Google Scholar 

  23. D.K. Ferry, Semiconductors (New York: Macmillan Publishing Co., 1991).

    Google Scholar 

  24. Eicke R. Weber (private communication).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthuvenkatraman, S., Gorantla, S., Venkat, R. et al. Antisite arsenic incorporation in the low temperature MBE of gallium arsenide: Physics and modeling. J. Electron. Mater. 27, 472–478 (1998). https://doi.org/10.1007/s11664-998-0179-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-998-0179-z

Key words

Navigation