Skip to main content
Log in

Green light emissions from GaP-AlxGa1−xP double heterostructures

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Green light emissions from GaP-AlxGa1−xP single and double heterostructures fabricated by temperature difference method under controlled vapor pressure liquid phase epitaxy, have been studied. When the luminescent layer GaP is very thin, we have observed efficient free exciton emissions from GaP-AlxGa1−xP double heterostructures while there is no detection from homostructures. At least ten times and two times stronger luminescence efficiencies were obtained from double heterostructures at 77K and room temperature, respectively. The higher free exciton recombination efficiency is thought to profit from free carrier confinement by potential barrier at the interface of GaP and AlxGa1−xP. Also, it is found that shallow impurities enhance the photoluminescence intensities in GaP-AlxGa1−xP double heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Thomas, M. Gershenzon and J.J. Hopfield, Phys. Rev. 131, 2397 (1963).

    Article  CAS  Google Scholar 

  2. F.A. Trumbore and D.G. Thomas, Phys. Rev. 137, A1030 (1965).

    Google Scholar 

  3. M. Gershenzon, Semiconductors and Semimetals Vol. 2, 283 (1966).

    Google Scholar 

  4. P.J. Dean, G. Kaminsky and R.B. Zetterstrom, J. Appl. Phys. 38, 3551 (1967).

    Article  CAS  Google Scholar 

  5. J.M. Dishman, D.F. Daly and W.P. Knox, J. Appl. Phys. 43, 4693 (1972).

    Article  CAS  Google Scholar 

  6. R.A. Lorgan, H.G. White and W. Wiegmann, Appl. Phys. Lett. 13, 139 (1968).

    Article  Google Scholar 

  7. M.G. Craford, W.O. Groves, A.H. Herzog and D.E. Hill, J. Appl. Phys. 42, 2751 (1971).

    Article  CAS  Google Scholar 

  8. J. Nishizawa, Y. Okuno and H. Tadano, J. Cryst. Growth 31, 215 (1975).

    Article  CAS  Google Scholar 

  9. J. Nishizawa, Y. Okuno, M. Koike and F. Sakurai, Jpn. J. Appl. Phys. 19, 377 (1980).

    Article  Google Scholar 

  10. J. Nishizawa, C.C. Jin, K. Suto and M. Koike, J. Appl. Phys. 53, 5876 (1982).

    Article  CAS  Google Scholar 

  11. K. Suto and Jun-ichi Nishizawa, J. Appl. Phys. 67 (1), 459 (1990).

    Article  CAS  Google Scholar 

  12. K. Suto, S. Adachi, T. Yoneyama and J. Nishizawa, J. Cryst. Growth 160, 13 (1995).

    Article  Google Scholar 

  13. Zh. I. Alferov, V.M. Andereev, V.I. Korol’kov, E.L. Portnoi and D.N. Tretyakov, Sov. Phys. Semicond. 2, 843 (1969).

    Google Scholar 

  14. H. Kressel and H. Nelson, RCA Rev. 30, 106 (1969).

    CAS  Google Scholar 

  15. I. Hayashi, M.B. Panish and P.W. Foy, IEEE J. Quantum Electron. QE-5, 211 (1969).

    Article  Google Scholar 

  16. I. Hayashi and M.B. Panish, J. Appl. Phys. 41, 150 (1970).

    Article  CAS  Google Scholar 

  17. F. Issiki, S. Fukatsu, T. Ohta and Y. Shiraki, Solid-State Electron. 40, 43 (1996).

    Article  CAS  Google Scholar 

  18. Kun-Jin Lee, H.K. Chen and J.C. Chen, J. Appl. Phys. 82, 1350 (1997).

    Article  CAS  Google Scholar 

  19. A.E. Widmer, R. Fehlmann and H.P. Kleinknecht, J. Cryst. Growth 35, 89 (1976).

    Article  CAS  Google Scholar 

  20. Hirofumi Kan, Hironobu Katsuno and Tokuzo Sukegawa, J. Cryst. Growth 46, 637 (1979).

    Article  CAS  Google Scholar 

  21. K. Adomi, N. Noto, A. Nakamura and T. Takenaka, J. Cryst. Growth 124, 570 (1992).

    Article  CAS  Google Scholar 

  22. Ken Suto, Derek Iwamoto, Jun-ichi Nishizawa and Noriyoshi Chubachi, J. Electrochem. Soc. 140, (9), 2682 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tongjun, Y., Matuo, T., Suto, K. et al. Green light emissions from GaP-AlxGa1−xP double heterostructures. J. Electron. Mater. 27, 1053–1058 (1998). https://doi.org/10.1007/s11664-998-0163-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-998-0163-7

Key words

Navigation