Skip to main content
Log in

Influence of surface contamination on metal/metal bond contact quality

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The influence of surface cleanliness of Au/Ni coated multichip materials (MCMs), Ag plated Cu lead frames, and Al bond pads on semiconductor chips on the strength of Au wire bond contacts has been investigated. A clean surface is important for good adhesion in any kind of attachment process. Investigations by means of x-ray photoelectron spectroscopy have been performed on the bond substrates to determine the chemical composition, the nature as well as the thickness of the contamination layer. The influence of contamination on bond contact quality has been examined by pull force measurements, which is an established test method in semiconductor packaging industry for evaluating the quality of wire bonds. The results clearly show that a strong correlation between the degree of contamination of the substrate and pull strength values exists. Furthermore, a contamination thickness limiting value of 4 nm for Au and Ag substrates was determined, indicating good wire bond contact quality. The effect of plasma cleaning on wire bondability of metallic and organic (MCMs) substrates has been examined by pull force measurements. These results confirm the correlation between surface contamination and the strength of wire bond contacts for Au/Ni coated MCMs and Ag plated Cu lead frames. Atomic force microscopy measurements have been performed to determine the roughness of bond surfaces, demonstrating the importance of nanoscale characterization with regard to the bonding behavior of the substrates. Finally, bonding substrates used in integrated circuit packaging are discussed with regard to their Au wire bonding behavior. The Au wire bonding process first results in a cleaning effect of the substrate to be joined and secondly enables the change of bonding energy into frictional heat giving rise to an enhanced interdiffusion at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Annual Handbook of ASTM Standards, F 1269, Test Methods for Destructive Shear Testing of Ball Bonds (Philadelphia, ASTM, 1990).

  2. Military Standard, MIL-STD83C, Test Methods and Procedures for Microelectronics Methods 2010/2011/2023 (1989).

  3. F. Rudolf, K.D. Lang, G. Jarney, Prüfverfahren für Drahtbondverbindungen, Teil I: Mechanische Prüfung. Teil II: Visuelle, elektrische und sonstige Verfahren, VTE 7 (1995).

  4. G.G. Harman, Reliability and Yield Problems of Wire Bonding in Microelectronics: The Application of Materials and Science, (National Institute of Standards and Technology, 1994).

  5. G.G. Harman, The Application of Materials and Interface Science, New York (1991).

  6. J.F. Graves, The Intl. J. on Hybrid Microelectronics 6, 147 (1983).

    CAS  Google Scholar 

  7. K.H. Ernst, D. Grman and R. Hauert, Surf. and Interface Analysis 21, 691 (1994).

    Article  CAS  Google Scholar 

  8. D. Grman, R. Hauert, E. Hollander and M. Amstutz, Solid State Technol. 35, 43 (1992).

    Article  CAS  Google Scholar 

  9. N. Onda et al., DC-Hydrogen Plasma Cleaning in IC Packaging, Proc. of SEMICON Singapore (1996).

  10. E. Wandke, Plasmaunterstützte Prozesse in der Elektronik, Transfer, Nr. 40 (1996).

  11. J.J. Yeh and I. Landau, At. Data Nucl. Data Tables 32, 7 (1985).

    Article  Google Scholar 

  12. N. Korner et al., Surf. and Coatings Techn. 76–77, 731 (1995).

    Google Scholar 

  13. J. Falk, J. Hauke and G. Kyska, Wire bonding on PCBs, Circuit World 20, 8 (1994).

    Google Scholar 

  14. R.F. Roberts, D.L. Allara, C.A. Pryde, D.N.E. Buchanan and N.D. Hobbins, Surf. Interface Anal. 2, 5 (1980).

    Article  CAS  Google Scholar 

  15. M.P. Seah and W.A. Dench, Surf. Inter. Anal. 1 (1979).

  16. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers, (London: John Wiley & Sons, 1992).

    Google Scholar 

  17. C.D. Wagner, W.M. Riggs, L.E. Davis and J.F. Moulder, Handbook of XPS, (Perkin-Elmer, 1978).

  18. C.T. Campell and M.T. Paffett, Surf. Sci. 143, 517 (1984).

    Article  Google Scholar 

  19. C.T. Campell, Surf. Sci. 157, 43 (1985).

    Article  Google Scholar 

  20. J.H. Linn and W.E. Swartz, Spectrosc. Lett. 18, 335 (1985).

    Article  CAS  Google Scholar 

  21. J.F. Graves and W. Gurany, Solid State Technol. 26, 227 (1993).

    Google Scholar 

  22. J. Goodman and S. Andrews, Solid State Technol. 33, 65 (1990).

    Article  CAS  Google Scholar 

  23. J.H. Thomas, C.E. Bryson and T.R. Pampalone, Surf. Inter. Anal. 14, 39 (1989).

    Article  CAS  Google Scholar 

  24. J.F. Graves and W. Gurany, Solid State Technol. 26, 227 (1993).

    Google Scholar 

  25. R. Hauert, Thin Solid Films 206, 323 (1991).

    Article  Google Scholar 

  26. M. Textor and R. Grauer, Corr. Sci. 23, 41 (1983).

    Article  CAS  Google Scholar 

  27. B.B. Mandelbrot, The Fractal Geometry of Nature, (New York: Freeman, 1982).

    Google Scholar 

  28. G. Dietler and Y. Zhang, Phys. A 191, 213 (1992).

    Article  Google Scholar 

  29. A. Stalder, Ph.D. thesis, University of Fribourg, Switzerland (1995).

    Google Scholar 

  30. G. Zambelli and L. Vincent, Materials and Contacts: A Tribological Approach, (Presses Polytechniques et Universitaires Romandes, 1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneuwly, A., Gröning, P., Schlapbach, L. et al. Influence of surface contamination on metal/metal bond contact quality. J. Electron. Mater. 27, 990–997 (1998). https://doi.org/10.1007/s11664-998-0132-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-998-0132-1

Keywords

Navigation