Skip to main content
Log in

The use of atomic hydrogen for low temperature oxide removal from HgCdTe

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Reflection high energy electron diffraction (RHEED) patterns of HgCdTe surfaces etched with bromine methanol are diffuse with a faint ring pattern indicative of an overlayer consisting of a mixture of oxides and amorphous Te. Exposure to an atomic hydrogen flux results in a RHEED pattern indicative of a high quality, two-dimensional surface. Atomic force microscopy (AFM) measurements indicate a rms surface roughness less than 1 nm. CdTe grown on this surface at 80°C maintains the streaky RHEED pattern and smooth surface as indicated by AFM. X-ray photoelectron spectroscopy measurements indicate that the etched surfaces contain both an oxide layer and a metallic Te overlayer which were removed by continued exposure to atomic hydrogen. Further exposure results in significant HgTe depletion, which appears to be a near-surface phenomenon. Preliminary device results indicate that use of atomic hydrogen is a viable approach for low temperature cleaning of etched HgCdTe surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Petit and F. Houzay, J. Vac. Sci. Technol. B 12, 547 (1994).

    Article  CAS  Google Scholar 

  2. T. Sugaya and M. Kawabe, Jpn. J. Appl. Phys. 30, L402 (1991).

    Google Scholar 

  3. M. Yamada, Y. Ide and K. Tone, Jpn. J. Appl. Phys. 31, L1157 (1992).

    Google Scholar 

  4. Y. Okada, T. Fujita and M. Kawabe, Appl. Phys. Lett. 67, 676 (1995).

    Article  CAS  Google Scholar 

  5. H. Shimomura, Y. Okada and M. Kawabe, Jpn. J. Appl. Phys. 31, L628 (1992).

    Google Scholar 

  6. H. Shimomura, Y. Okada, H. Matsumoto, M. Kawabe, Y. Kitami and Y. Bando, Jpn. J. Appl. Phys. 32, 631 (1993).

    Article  Google Scholar 

  7. Y.J. Chun, Y. Okada and M. Kawabe, Jpn. J. Appl. Phys. 32, L1085 (1993).

    Google Scholar 

  8. C.M. Rouleau and R.M. Park, J. Appl. Phys. 73, 4610 (1993).

    Article  CAS  Google Scholar 

  9. Y. Luo, D.A. Slater and R.M. Osgood, Jr., Appl. Phys. Lett. 67, 55 (1995).

    Article  CAS  Google Scholar 

  10. Zhonghai Yu, S.L. Buczkowski M.C. Petcu, N.C. Giles and T.H. Myers, Appl. Phys. Lett. 68, 529 (1996).

    Article  CAS  Google Scholar 

  11. Zhonghai Yu, S.L. Buczkowski, N.C. Giles and T.H. Myers, Appl. Phys. Lett. 69, 82 (1996).

    Article  CAS  Google Scholar 

  12. Zhonghai Yu, S.L. Buczkowski L.S. Hirsch and T.H. Myers, J. Appl. Phys. 80, 6425 (1996).

    Article  CAS  Google Scholar 

  13. C.D. Stinespring, J.M. Lannon Jr., J.S. Gold, M. Guntu and S. Kumar Surface Modification Technologies IX, eds. T.S. Sudarshan, W. Reitz and J. Stiglich, (Warrendale, PA: The Minerals, Metals, and Materials Society, 1996), p. 565.

    Google Scholar 

  14. J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, (Eden Prairie, MN: Physical Electroncis, Inc. 1995), p. 25.

    Google Scholar 

  15. H.M. Nitz, O. Ganschow, U. Kaiser, L. Wiedmann and A. Benninghoven, Surf. Sci. 104, 365 (1981).

    Article  CAS  Google Scholar 

  16. A.B. Christie, I. Sutherland and J.M. Walls, Surf. Sci. 135, 225 (1983).

    Article  CAS  Google Scholar 

  17. Atomic Hydrogen Source: Users Guide, (Minneapolis, MN: EPI, 1995).

  18. L.S. Hirsch, Zhonghai Yu, S.L. Buczkowski, T.H. Myers and M.R. Richards-Babb, J. Electron. Mater. 26, 534 (1996).

    Google Scholar 

  19. T.S. Sun, S.P. Buchner and N.E. Byer, J. Vac. Sci. Technol. 17, 1067 (1980).

    Article  CAS  Google Scholar 

  20. S.W. Garentroom and N. Winograd, J. Chem. Phys. 67, 3500 (1977).

    Article  Google Scholar 

  21. W.E. Swartz, K.J. Wynne and D.M. Hercules, Anal. Chem. 43, 1884 (1971).

    Article  Google Scholar 

  22. S. Svensson, N. Martensson, E. Basilier and P.A. Malmqvist, J. Electron. Spectrosc. Relat. Phenom. 9, 51 (1976).

    Article  CAS  Google Scholar 

  23. D. Briggs and M.P. Seah, Practical Surface Analysis Vol. 1 (Chichester, England: John Wiley and Sons, 1990), p. 207.

    Google Scholar 

  24. R.C. Keller, M. Seelmann-Eggbert and H.J. Richter, Appl. Phys. Lett 67, 3750 (1995); R.C. Keller, M. Seelmann-Eggbert and H.J. Richter, J. Electron. Mater. 24, 1155 (1995).

    Article  CAS  Google Scholar 

  25. G.D. Davis, N.E Byer, R.A. Riedel, R.R. Daniels and G. Margaritondo, J. Vac. Sci. Technol A 3, 203 (1985).

    Article  CAS  Google Scholar 

  26. T.H. Myers, A.N. Klymachyov, C.M. Vitus, N.S. Dalal, D.E. Endres, K.A. Harris, R.W. Yanka and L.M. Mohnkern, Appl. Phys. Lett. 66, 224 (1995).

    Article  CAS  Google Scholar 

  27. J.G. Werthen, J.P. Haring and R.H. Bube, J. Appl. Phys. 54, 1159 (1983).

    Article  CAS  Google Scholar 

  28. U. Slosbach and H.J. Richter, Surf. Sci. 97, 191 (1980).

    Article  Google Scholar 

  29. M.K. Bahl, R.L. Watson and K.J. Irgolic, J. Chem. Phys. 66, 5526 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, L.S., Ziemer, K.S., Richards-Babb, M.R. et al. The use of atomic hydrogen for low temperature oxide removal from HgCdTe. J. Electron. Mater. 27, 651–656 (1998). https://doi.org/10.1007/s11664-998-0030-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-998-0030-6

Keywords

Navigation