Skip to main content
Log in

Determination of the Band Offset of GalnP- GaAs and AllnP- GaAs Quantum Wells by Optical Spectroscopy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the determination of band offset ratios, using photoluminescence excitation measurements, for GaInP/GaAs and AlInP/GaAs quantum wells grown by gas-source molecular beam epitaxy. To reduce the uncertainty related to the intermixing layer at heterointerfaces, the residual group-V source evacuation time was optimized for abrupt GalnP/GaAs (AlInP/GaAs) interfaces. Based upon thickness and composition values determined by double-crystal x-ray diffraction simulation and cross-sectional transmission electron microscopy, the transition energies of GalnP/GaAs and AlInP/GaAs quantum wells were calculated using a three-band Kane model with varying band-offset ratios. The best fit of measured data to calculated transition energies suggests that the valence-band offset ratio (γ band discontinuity) was 0.63 ± 0.05 for GalnP/GaAs and 0.54 ± 0.05 for AlInP/GaAs heterostructures. This result showed good agreement with photoluminescence data, indicating that the value is independent of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Mondry and H. Kroemer, IEEE Electron. Dev. Lett. 6, 175 (1985); H. Kroemer J. Vac. Sci. Technol. B 1, 126 (1983).

    Google Scholar 

  2. W. Liu, E.A.Beam III, T. Kim and A. Khatibzadeh, Current Trends in Heterojunction Bipolar Transistor, ed. M.F. Chang (World Scientific, 1996), p. 241, and the references therein.

  3. J.M. Kuo, and Y.K. Chen, IEEE Electron. Dev. Lett. 15, 13 (1994).

    Article  Google Scholar 

  4. J.M. Kuo, Thin Solid Films 231, 158 (1993), and the references therein.

    Article  CAS  Google Scholar 

  5. J. R. Lothian, J. M. Kuo, F. Ren and S. J. Pearton, J. Electron. Mater. 21, 441 (1992).

    CAS  Google Scholar 

  6. J. R. Lothian, J. M. Kuo, W. S. Hobson, E. Lane, F. Ren and S. J. Pearton, J. Vac. Sci. Technol. B 10, 1061 (1992).

    Article  CAS  Google Scholar 

  7. F. Ren, J.R. Lothian, S.J. Pearton, C.R. Abernathy, P.W. Wisk, T.R. Fullowan, B. Tseng, S.N.G. Ghu, Y.K. Chen, L.W. Yang, S.T. Fu, R.S. Brozovich, H.H. Lin, C.L. Henning and T. Henry, J. Vac. Sci Technol. B 12, 2916 (1994) and the references therein.

    Article  CAS  Google Scholar 

  8. M.A. Rao, E.J. Caine, H. Kroemer, S.I. Long and D.I. Babic, J. Appl. Phys. 61, 643 (1987).

    Article  CAS  Google Scholar 

  9. M.O. Watanabe and Y. Okiba, Appl. Phys. Lett. 50, 906 (1987).

    Article  CAS  Google Scholar 

  10. M.A. Haase, M.J. Hafich and G.Y. Robinson, Appl. Phys. Lett. 58, 616 (1991).

    Article  CAS  Google Scholar 

  11. J. Chen, J.R. Sites, I.L. Spain, M. J. Hafich and G.Y. Robinson, Appl. Phys. Lett. 58, 744 (1991).

    Article  CAS  Google Scholar 

  12. C. Biswas, N. Debbar, P. Bhattacharya, M. Razeghi, M. Defour and F. Omnes, Appl. Phys. Lett. 56, 833 (1990).

    Article  CAS  Google Scholar 

  13. T. Kobayashi, K. Taira, F. Nakamura and M. Kuwai, J. Appl. Phys. 65, 4898 (1989).

    Article  CAS  Google Scholar 

  14. G. Arnaud, P.-Boring, B. Gil, J.-P. Carcia, J.-P. Landesman, and M. Leroux, Phys. Rev. B 46, 1886 (1992).

    Article  Google Scholar 

  15. T.W. Lee, P.A. Houston, R. Kumar, X.F. Yang, G. Hill, M. Hopkinson and P.A. Claxton, Appl. Phys. Lett. 60, 474 (1992).

    Article  CAS  Google Scholar 

  16. S.L. Feng, J. Krynicki, V. Donchev, S.C. Bourgoin, M. Di Forte-Poisson, C. Brylinski, S. Delage, H. Blanck, and S. Alaya, Semicond. Sci. Technol. 8, 2092 (1993).

    Article  CAS  Google Scholar 

  17. T. Hayakawa, K. Takahashi, M. Hosoda, S. Yamamoto, and T. Hijikata, Jpn. J. Appl. Phys. 27, 1553 (1988).

    Article  Google Scholar 

  18. H. Tanaka, Y. Kawamura, S. Nojima, K. Wakita and H. Asahi, J. Appl. Phys. 61, 1713 (1987).

    Article  CAS  Google Scholar 

  19. M. Ikeda, K. Nakano, Y. Mori, K. Kaneko and N. Watanabe, J. Cryst. Growth 77, 380 (1986).

    Article  CAS  Google Scholar 

  20. C.T.H.F. Liedenbaum, A. Valster, A.L.G.J. Severens and G.W. ’t Hooft, Appl. Phys. Lett. 57, 2698 (1990).

    Article  CAS  Google Scholar 

  21. M.D. Dawson and G. Duggan, Phys. Rev. B47, 12598 (1993).

    Google Scholar 

  22. D.J. Mowbray, O.P. Kowalski, M.S. Skolnick, M.C. Delong, M. Hopkinson, J.P.R. David and A.G. Cullis, J. Appl. Phys. 75, 2029 (1994).

    Article  CAS  Google Scholar 

  23. K. Interholzinger, D. Patel, G.S. Menoni, O. Bucenfusca, L.M. Woods, P. Thiagarajan and G.Y. Robinson, 37th Electronic Materials Conf., Charlottesville, VA (1995).

  24. A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata and I. Hino, Appl. Phys. Lett. 50, 673 (1987).

    Article  CAS  Google Scholar 

  25. Q. Liu, S. Derksen, W. Prot, A. Lindner and F. J. Tegude, J. Appl. Phys. 79, 305 (1996).

    Article  CAS  Google Scholar 

  26. G. Duggan, Heterojunction Band Discontinuities, ed. F. Capassoand G. Margaritondo (Holland: Elsevier, 1987), p. 207, and the references therein.

    Google Scholar 

  27. H.C. Kuo, J.M. Kuo, Y.C. Wang, D.K. Sengupta, D. Turnbull, C.H. Lin, H. Chen, S.G. Bishop and G.E. Stillman, 38th Electronic Materials Conf., Santa Barbara, CA (1996).

  28. J.M. Kuo, and E.A. Fitzgerald J. Vac. Sci. Technol. B10, 959 (1992).

    Google Scholar 

  29. J.M. Kuo, H.C. Kuo, J.Y. Cheng, Y.C. Wang, Y. Lu and W.E. Mayo, J. Cryst. Growth 158, 393 (1996).

    Article  CAS  Google Scholar 

  30. B.K. Tanner, Adv. X-ray Anal. 33, 1 (1990).

    CAS  Google Scholar 

  31. E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

    Article  Google Scholar 

  32. V. Swaminathan and A.T. Macrander, Materials Aspects of GaAs and InP Based Structures (Englewood Cliffs, NJ: Prentice Hall, 1991).

    Google Scholar 

  33. Physics of Group IV Elements and III-V Compounds, ed. O. Madelung, Landolt-Bornstein, New Series, Group III, Vol. 17, Pt. a (Berlin: Springer, 1982).

  34. P. Emanuelsson, M. Drechsler, D.M. Hofmann, B.K. Meyer, M. Moser and F. Scholz, Appl. Phys. Lett 64, 2849 (1994).

    Article  CAS  Google Scholar 

  35. H. Lee, M.V. Klein, D.E. Aspnes, C.P. Kuo, M. Peanasky and M.G. Craford, J. Appl. Phys. 73, 400 (1993).

    Article  CAS  Google Scholar 

  36. F. Omnes and M. Razeghi, Appl. Phys. Lett. 59, 1034 (1991).

    Article  CAS  Google Scholar 

  37. S. Tiwari and D. J. Frank, Appl. Phys. Lett 60, 630 (1992).

    Article  CAS  Google Scholar 

  38. Sverre Froyen, Alex Zunger and A. Mascarenhas, Appl. Phys. Lett 68, 2852 (1996). $

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, H.C., Kuo, J.M., Wang, Y.C. et al. Determination of the Band Offset of GalnP- GaAs and AllnP- GaAs Quantum Wells by Optical Spectroscopy. J. Electron. Mater. 26, 944–948 (1997). https://doi.org/10.1007/s11664-997-0279-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0279-1

Key words

Navigation