Skip to main content
Log in

Stress relaxation and creep of 12 to 35 μm copper foil

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Stress relaxation and creep of the electrodeposited and rolled copper foils, 12-35 μm thick, are investigated near yield stress and near room temperature. The stress relaxation does not obey a logarithmic time law; the creep appears to follow a power function. These deviations from the expected logarithmic behavior are thought to be caused by very small grain size, unstable non-equilibrium defect structure and extensive micropore population (vacancies and vacancy clusters) typical of the electrodeposit. Relaxation and creep are significantly lower for the rolled (than for the electrodeposited) foil. Decreasing the electrode-posit thickness has an effect of enhancing relaxation and creep, attributable to a limited nucleation on the cathode surface and consequent generation of microvoids between growth clusters in the vicinity of the substrate. The foil thickness effect on creep and stress relaxation is not observed for the rolled foil, which is prone to embrittlement and stiffening at about 323K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fox, J. Testing Evaluation 4, 74 (1976).

    Article  CAS  Google Scholar 

  2. L.A. Tumanova and T.D. Shermergor, Phys. Met. Metall. 34 (4), 207 (1972).

    Google Scholar 

  3. L.A. Tumanova and T.D. Shermergor, Phys. Met. Metall. 48 (3), 172 (1979).

    Google Scholar 

  4. I.T. Aleksanyan, Phys. Met. Metall. 25 (5), 189 (1968).

    Google Scholar 

  5. V.l. Verbkina, K.K. Ziling and L.D. Pokrovskiy, Phys. Met. Metall. 39 (5), 1086 (1975).

    CAS  Google Scholar 

  6. L.S. Palatnikand A.I.Il’inskii,Sov.Phys. Usp. 11,564(1969).

    Article  Google Scholar 

  7. F.R. Brotzen, Inter. Mater. Rev. 39, 24 (1994).

    CAS  Google Scholar 

  8. A.I. Il’inskii, L.S. Palatnik and N.P. Sapelkin, Sov. Phys. Solid State 15, 2134 (1974).

    Google Scholar 

  9. H.D. Merchant, Defect Structure. Morphology and Properties of Deposits, ed. Harish D. Merchant, (Warrendale, PA: TMS, 1995), p. 1.

    Google Scholar 

  10. M.Y. Fuks, L.S. Palatnik, A.I. Il’inskii and V.V. Belozerov, Sov. Phys. Solid State 9, 588 (1967).

    Google Scholar 

  11. K.K. Ziling and V. Y. Pchelkin , Zh. Prikl. Mekh. Tekh. Fiz. (3), 442 (1970).

  12. I.I. Solonovich, Phys. Met. Metall. 40 (3), 158 (1975).

    Google Scholar 

  13. F.R. Brotzen, CT. Rosenmayer, CG. Cofer and R.J. Gale, Vacuum 41, 1287 (1990).

    Article  Google Scholar 

  14. R.J. DeAngelis, D.B. Knorr and H.D. Merchant, J. Electron. Mater. 24, 927 (1995).

    Article  CAS  Google Scholar 

  15. H.D. Merchant, J. Electron. Mater. 22, 631 (1993).

    CAS  Google Scholar 

  16. T.R. Bergstresser and H.D. Merchant, Defect Structure, Morphology and Properties of Deposits, ed. Harish D. Merchant, (Warrendale, PA: TMS, 1995), p. 115.

    Google Scholar 

  17. T.G. Nieh and W.D. Nix, Metall. Trans. A 12A, 893 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchant, H.D. Stress relaxation and creep of 12 to 35 μm copper foil. J. Electron. Mater. 26, 833–838 (1997). https://doi.org/10.1007/s11664-997-0259-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0259-5

Key words

Navigation