Skip to main content
Log in

Crystallographic texture of C54 titanium disilicide as a function of deep submicron structure geometry

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Detailed analysis of the crystallographic texture of C54 TiSi2 was performed and showed a strong correlation between the geometry of the silicide structures and preferential crystallographic orientation. The study was undertaken on blanket and patterned TiSi2 films formed in the reaction between 32 nm of Ti and undoped polycrystalline silicon using both in situ x-ray diffraction during heating and post-anneal four-circle pole figure reflection geometry measurements. Full pole figures were taken to determine the distribution of C54 TiSi2 grain orientations in narrow (0.2 to 1.1 μm) lines which was compared with similar results obtained from unpatterned (blanket) films. While in blanket films we found the presence of weak <311> C54 TiSi2 crystallographic orientation perpendicular to the sample surface, the <040> preferential orientation dominated in patterned submicron line structures and increased with decreasing linewidth. Using pole figure analysis, we observed strong <040> fiber texture in narrow lines with a slight variation in the tilt of the (040) planes normal in the direction perpendicular to the line (full width at half maximum [FWHM] ≈6°), but very little along the length of the line (FWHM ≈2°). In addition, a preferred in-plane (azimuthal) orientation of <040> crystals was found which showed that most of the <040> grains had their (004) plane normals oriented parallel with the line direction. These findings support a model of the C49 to C54 TiSi2 transformation involving rapid growth of certain orientations favored by the one-dimensional geometry imposed by narrow lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Maex,Mater. Sci. Eng. R11, 53 (1993).

    CAS  Google Scholar 

  2. L.A. Clevenger, R.W. Mann, R.A. Roy, KL. Saenger, C. Cabrai,Jr. and J. Piccirillo, J. Appl. Phys. 76, 7874 (1994).

    Article  CAS  Google Scholar 

  3. R.W. Mann, L.A. Clevenger, P.D. Agnello and F.R. White, IBM J. Research and Development 39, 403 (1995).

    Article  CAS  Google Scholar 

  4. L.A. Clevenger and R.W. Mann, Mater. Res. Soc. Symp. Proc. 320, 14 (1994).

    Google Scholar 

  5. L.A. Clevenger, C. Cabrai, Jr., R.A. Roy, C. Lavoie, R. Viswanathan, K.L. Saenger, J. Jordan-Sweet, G. Morales, K.F. Ludwig,Jr. and G.B. Stephenson, Mater. Res. Soc. Symp. Proc. 402, (Pittsburgh, PA: Mater. Res. Soc, 1996), p. 257.

    Google Scholar 

  6. L.A. Clevenger, R.A. Roy, C. Cabrai, Jr., K.L. Saenger, S. Brauer, G. Morales, K.F. Ludwig, Jr., G. Gifford, J. Bucchignano, J. Jordan-Sweet, P. DeHaven and G.B. Stephenson, J. Mater. Res. 10, 2355 (1995).

    CAS  Google Scholar 

  7. H. Jeon, C.A. Sukow, J.W. Honeycutt, G.A. Rozgonyi and R.J. Nemanich, J. Appl. Phys. 71, 4269 (1992).

    Article  CAS  Google Scholar 

  8. Z. Ma and L.H. Allen, Phy. Rev. B 49, 13501 (1994).

    Article  CAS  Google Scholar 

  9. V. Svilan, K.P. Rodbell, L.A. Clevenger, C. Cabrai, Jr., R.A. Roy, C. Lavoie, J. Jordan-Sweet and J.M.E. Harper, Mater. Res. Symp. Proc. 427, (Pittsburgh, PA: Mater. Res. Soc. 1997), p. 53.

    Google Scholar 

  10. R.A. Roy, L.A. Clevenger, C. Cabrai, Jr., K.L. Saenger, S. Brauer, J. Jordan-Sweet, J. Bucchignano, G.B. Stephenson, G. Morales and K.F. Ludwig, Jr., Appl. Phys. Lett. 66, 1732 (1995).

    Article  CAS  Google Scholar 

  11. L.G. Schulz, J. Appl. Phys. 20, 1030 (1949).

    Article  Google Scholar 

  12. W.F. McClune, Powder Diffraction File Inorganic Phases, (PA: International Center for Diffraction Data, 1990), Card No. 35-785.

    Google Scholar 

  13. I.J. Raaijmakers, Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven (1988).

    Google Scholar 

  14. Z. Ma, G. Ramanath, and L.H. Allen, Mater. Res. Soc. Symp. Proc. 320, (Pittsburgh, PA: Mater. Res. Soc, 1994), p. 361.

    Google Scholar 

  15. C.A. Pico and M. G. Lagally, J. Appl. Phys. 64, 4957 (1988).

    Article  CAS  Google Scholar 

  16. Z. Ma, L.H. Allen and D.D. J. Allman, Thin Solid Films 253, 451 (1994).

    Article  CAS  Google Scholar 

  17. G. Miles, R.W. Mann, and J.E. Bertsch, ICMCTF Proc. 1996, in press.

  18. EMS on Line, World Wide Web, http: / /cimewww.epfl.ch.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svilan, V., Rodbell, K., Clevenger, L. et al. Crystallographic texture of C54 titanium disilicide as a function of deep submicron structure geometry. J. Electron. Mater. 26, 1090–1095 (1997). https://doi.org/10.1007/s11664-997-0249-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0249-7

Key words

Navigation