Skip to main content
Log in

Glancing-angle ion bombardment for modification and monitoring of semiconductor surfaces

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using glancing-angle ion bombardment for surface modification rather than conventional near-normal incidence ions has the advantages of reducing damage and implantation projected ranges, reducing channeling, reducing sputtering, and preferentially removing surface asperities leading to flat surfaces. The effects of bombardment conditions on the surface morphology and perfection of GaAs (001), InP (001), and Si (001) surfaces are reported. Air-exposed surfaces were cleaned and smoothened to near atomic flatness without damage under optimal conditions. Sputtering yield, measured using film thicknesses and changes in reflection high-energy electron diffraction oscillations, decreased with decreasing incidence angle. The low sputtering yield and minimal damage make a glancing-angle geometry ideal for real-time characterization by ion scattering spectroscopy. Surface composition measurements on single monolayers of InAs on GaAs showed that the glancing-angle Ar beam did not measurably change the In coverage over relatively long times. A new ion beam monitoring technique was also developed that utilizes the advantages of glancing-angle ions. Specular scattering of 3 keV He ions was observed for incidence angles of 2–6° from GaAs (001). Oscillation in the specularly scattered ion current during GaAs growth were observed with periods corresponding to monolayer growth times. The oscillations allow a simple quantitative interpretation based on scattering by adatoms and step edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Chason and T.M. Mayer, Appl. Phys. Lett. 62, 363 (1993).

    Article  CAS  Google Scholar 

  2. E.A. Eklund, R. Bruinsma and J. Rudnick, Phys. Rev. Lett. 67, 1759 (1991).

    Article  CAS  Google Scholar 

  3. D.G. Armour and A.H. Al-Bayati, Nucl. Instrum. Methods Phys. Res. B 67, 279 (1992).

    Article  Google Scholar 

  4. S.T. Picraux, D.K. Brice, K.M. Horn, J.Y. Tsao and E. Chason, Nucl. Instr. Meth. Phys. Res. B 48, 414 (1990).

    Article  Google Scholar 

  5. J.C. Bean, G.E. Becker, P. M. Petroff and T. E. Seidel, J. Appl. Phys. 48, 907 (1977).

    Article  CAS  Google Scholar 

  6. F.D. Auret, G. Myburg, S.A. Goodman, L.J. Bredell and W.O. Barnard, Nucl. Instr. Meth. Phys. Res. B 67, 410 (1992).

    Article  Google Scholar 

  7. M.M. Sung, C. Kim and J.W. Rabalais, Nucl. Instr. and Meth. B 118, 522 (1996).

    Article  CAS  Google Scholar 

  8. M. Katayama, E. Nomura, H. Soejima, S. Hayashi and M. Aono, Nucl. Instr. and Meth. B 45, 408 (1990).

    Google Scholar 

  9. R.E. Lee, J. Vac. Sci. Technol. 16, 387 (1978).

    Google Scholar 

  10. P. Oelhafen, J.L. Freeouf, G.D. Pettit and J.M. Woodall, J. Vac. Sci. Technol. B 1, 787 (1983).

    Article  CAS  Google Scholar 

  11. I. Suemune, A. Kishimoto, K. Hamaoka, Y. Honda, Y. Kan and M. Yamanishi, Appl. Phys. Lett. 56, 2393 (1990).

    Article  CAS  Google Scholar 

  12. R.A. Hoffman, W.J. Lange, A.J. Noreika and J.J. Schreurs, J. Vac. Sci. Technol. 20, 341 (1982).

    Article  Google Scholar 

  13. S.B. Ogale, A. Madhokar and M. Thomsen, Appl. Phys. Lett. 51, 837 (1987).

    Article  CAS  Google Scholar 

  14. J.G.C. Labanda and S.A. Barnett, J. Vac. Sci. Technol. A 14, 485 (1996).

    Article  CAS  Google Scholar 

  15. J.G.C. Labanda, L. Hultman and S.A. Barnett, J. Vac. Sci. Technol. B13, 2260 (1995). See also J.G.C. Labanda, L. Hultman and S.A. Barnett, Appl. Phys. Lett. 63, 3114 (1995).

    Article  CAS  Google Scholar 

  16. J.G.C. Labanda, L. Hultman and S.A. Barnett (unpublished).

  17. J.E. Guyer, J.G.C. Labanda, M.R. Pillai, P. Deluca and S.A. Barnett (unpublished).

  18. J.G.C. Labanda and S.A. Barnett, J. Vac. Sci. Technol. A 15, 825 (1997).

    Article  CAS  Google Scholar 

  19. R.F. Kopf, J.M. Kuo and M. Ohring, J. Vac. Sci. Technol. B 9, 1920 (1991)

    Article  CAS  Google Scholar 

  20. P. Bedrossian, J.E. Houston, J.Y. Tsao, E. Chason and S.T. Picraux, Phys. Rev. Lett. 67, 124 (1991).

    Article  CAS  Google Scholar 

  21. E. Spiller, Appl. Phys. Lett. 54, 2293 (1989).

    Article  CAS  Google Scholar 

  22. D.G. Schimmel, J. Electrochem. Soc. 123, 734 (1976).

    Article  CAS  Google Scholar 

  23. H. Niehus, W. Heiland and E. Taglauer, Surf. Sci. Rep. 17, 213 (1993).

    Article  CAS  Google Scholar 

  24. F. Honzay, C. Guille, J.M. Moison, P. Henoc and F. Barthe, J. Cryst. Growth 81, 67 (1987).

    Article  Google Scholar 

  25. R. Kaspi and K.R. Evans, Appl. Phys. Lett. 67, 819 (1995).

    Article  CAS  Google Scholar 

  26. J.G.C. Labanda and S.A. Barnett, Appl. Phys. Lett. 70, 2843 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labanda, J.G.C., Barnett, S.A. Glancing-angle ion bombardment for modification and monitoring of semiconductor surfaces. J. Electron. Mater. 26, 1030–1038 (1997). https://doi.org/10.1007/s11664-997-0240-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0240-3

Key words

Navigation