Skip to main content
Log in

High performance SWIR HgCdTe detector arrays

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Short wave infrared (SWIR) devices have been fabricated using Rockwell’s double layer planar heterostructure (DLPH) architecture with arsenic-ion implanted junctions. Molecular beam epitaxially grown HgCdTe/CdZnTe multilayer structures allowed the thin, tailored device geometries (typical active layer thickness was ∼3.5 µm and cap layer thickness was ∼0.4 µm) to be grown. A planar-mesa geometry that preserved the passivation advantages of the DLPH structure with enhanced optical collection improved the performance. Test detectors showed Band 7 detectors performing near the radiative limit (∼3-5X below theory). Band 5 detector performance was ∼4-50X lower than radiative limited performance, apparently due to Shockley-Hall-Read recombination. We have fabricated SWIR HgCdTe 256 × 12 × 2 arrays of 45 um × 45 µm detector on 45 µm × 60 µm centers and with cutoff wavelength which allows coverage of the Landsat Band 5 (1.5−1.75 µm) and Landsat Band 7 (2.08−2.35 µm) spectral regions. The hybridizable arrays have four subarrays, each having a different detector architecture. One of the Band 7 hybrids has demonstrated performance approaching the radiative theoretical limit for temperatures from 250 to 295K, consistent with test results. D* performance at 250K of the best subarray was high, with an operability of ∼99% at 1012 cm Hz1/2/W at a few mV bias. We have observed 1/f noise below 8E-17 AHz 1/2 at 1 Hz. Also for Band 7 test structures, Ge thin film diffractive microlenses fabricated directly on the back side of the CdZnTe substrate showed the ability to increase the effective collection area of small (nominally <20 µm µm) planar-mesa diodes to the microlens size of 48 urn. Using microlenses allows array performance to exceed 1-D theory up to a factor of 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Kozlowski, J.M. Arias, G.M. Williams, K. Vural, D.E. Cooper and S.C. Cabelli, Proc. SPIE, Vol. 2274, (SPIE, July 1994).

  2. M.Gallant and A. Zemel, Appl. Phys. Lett. 52 (20), 16 May (1988).

  3. M. Gallant, N. Puetz, A. Zemel and F.R. Shepherd, Appl. Phys. Lett. 52 (9), 29 February (1988).

  4. M.E. Motamedi, W.E. Tennant, R. Melendes, N.S. Gluck, S. Park, J.M. Arias, J. Bajaj, J.G. Pasko, W.V. McLevige, M. Zandian, R. Hall, K.G. Steckbauer, P.D. Richardson and D.E. Cooper, Proc. SPIE Vol. 2687, 71 (SPIE, 1996).

    Google Scholar 

  5. G.M. Williams and R.E. DeWames, J. Electron. Mater. 24, 1239 (1995).

    Article  CAS  Google Scholar 

  6. J.M. Arias, Properties of Narrow Gap Cadmium-based Compound, EMIS Datareview Series No. 10, ed. Peter Capper, (INSPEC, 1994), p. 30.

  7. J.M. Arias, J.G. Pasko, M. Zandian, J. Bajaj, L.J. Kozlowski, R.E. DeWames and W.E. Tennant, Proc. SPIE, Vol. 2228, (SPIE, 1994).

  8. J. Bajaj, J.M. Arias, M. Zandian, J.G. Pasko, L.J. Kozlowski, R.E. DeWames and W.E. Tennant, J. Electron. Mater. 24, 1067 (1995).

    Article  CAS  Google Scholar 

  9. J.M. Arias, J.G. Pasko, M. Zandian, S.H. Shin, G.M. Williams, L.O. Bubulac, R.E. DeWames and W.E. Tennant, Appl. Phys. Lett. 62, 976 (1993).

    Article  CAS  Google Scholar 

  10. L.O. Bubulac, D.S. Lo, W.E. Tennant, D.D. Edwall, J.C. Chen and J. Ratusnik, Appl. Phys. Lett. 50, 1586 (1987).

    Article  CAS  Google Scholar 

  11. L.O. Bubulac, S.J. Irvine,E.R. Gertner,J. Bajaj and W.P. Lin, Semicon. Sci Technol S270 (1993).

  12. H. Holloway, J. Appl. Phys. 49 (7), 4264, July (1978).

    Article  Google Scholar 

  13. H. Holloway, M.D. Hurley and E.B. Schermer, Appl. Phys. Lett. 32 (1), 165, 1 January (1978).

    Article  Google Scholar 

  14. W. van Roosbroeck and W. Schockley, Phys. Rev. 94, 1558 (1954).

    Article  Google Scholar 

  15. L.O. Bubulac, W.E. Tennant, D.S. Lo, D.D. Edwall, J.C. Robinson, J.S. Chen and G. Bostrup, J. Vac. Sci. Technol. A 5 (5), 3166, Sept/Oct (1987).

    Google Scholar 

  16. L.O. Bubulac,W.E. Tennant, J. Bajaj, J. Sheng, R. Brighman, A.H.B. Vanderwyck, M. Zandian and W.V. McLevige, J. Electron. Mater. Vol. 24, (9), 1175 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubulac, L.O., Tennant, W.E., Pasko, J.G. et al. High performance SWIR HgCdTe detector arrays. J. Electron. Mater. 26, 649–655 (1997). https://doi.org/10.1007/s11664-997-0210-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0210-9

Key words

Navigation