Hot plasma chemical vapor deposition of GaN on GaAs(100) substrate


GaN films have been deposited on GaAs(lOO) substrates by a novel growth technique, hot plasma chemical vapor deposition. A radio frequency N plasma source with high power, up to 5 kW, provides an abundance of nitrogen atoms during growth. In addition, strong ultraviolet emissions from the hot plasma irradiate onto the substrate and promote the dissociation of triethylgallium, this results in growth of GaN at very low temperature (even at room temperature). In this paper, we describe the characteristics of hot nitrogen plasma and present the results of the low temperature growth of GaN. In addition, we have investigated the effects of the nitridation of GaAs substrates. Reflection high energy electron diffraction indicates the formation of a surface cubic nitrided layer on the pretreated GaAs. The GaN films grown on fully nitrided GaAs(l00) substrates are of dominantly cubic structures.

This is a preview of subscription content, log in to check access.


  1. 1.

    H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  2. 2.

    S.N. Mohammad, A.A. Salvador and H. Morkoç, IEEE 83, 1306 (1995).

    Article  CAS  Google Scholar 

  3. 3.

    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).

    Article  CAS  Google Scholar 

  4. 4.

    S. Nakamura, Y. Harada and M. Seno, Appl. Phys. Lett. 58, 2021 (1991).

    Article  CAS  Google Scholar 

  5. 5.

    J.N. Kuznia, J.W. Yang, Q.C. Chen, S. Krishnankutty, M.A. Khan, T. George and J. Frietas, Jr, Appl. Phys. Lett. 65,2407 (1994).

    Article  CAS  Google Scholar 

  6. 6.

    M.A. Khan, J.N. Kuznia, J.M. Van Hove, D.T. Olsen, S. Krishnankutty and R.M. Kolbas, Appl. Phys. Lett. 58, 526 (1991).

    Article  CAS  Google Scholar 

  7. 7.

    C.Y. Hwang, M.J. Schurman, W.E. Mayo, Y. Li, Y. Lu, H. Liu, T. Salagaj and R.A. Stall, J. Vac. Sci. Technol. A 13, 672 (1995).

    Article  CAS  Google Scholar 

  8. 8.

    K. Kimura, S. Miwa, T. Yasuda, L.H. Kuo, T. Wang, C. Jin, K. Tanaka and T. Yao, Proc. Intl. Symp. on Blue Laser and Light Emitting Diodes, Chiba, Japan, p. 167, March 5–7, 1996.

    Google Scholar 

  9. 9.

    R.P. Vaudo, J.W. Cook, Jr. and J.F. Schetzina, J. Vac. Sci. Technol. B 12, 1732 (1994).

    Article  Google Scholar 

  10. 10.

    A.N. Wright and C.A. Winkler, Active Nitrogen (New York: Academic Press, 1968).

    Google Scholar 

  11. 11.

    S. Fujieda and Y. Matsumoto, Jpn. J. Appl. Phys. 30, L1665 (1991).

    Article  CAS  Google Scholar 

  12. 12.

    H. Tsuchiya, T. Okahisa, F. Hasegawa. H. Okumura and S. Yoshida, Jpn. J. Appl. Phys. 33, 1747 (1994).

    Article  CAS  Google Scholar 

  13. 13.

    T. Makimoto and N. Kobayashi, Appl. Phys. Lett. 67, 548 (1995).

    Article  CAS  Google Scholar 

  14. 14.

    T. Sugaya and M. Kawabe, Jpn. J. Appl. Phys. 30, L402 (1991).

    Article  CAS  Google Scholar 

  15. 15.

    S. Miyoshi, K. Onabe, N. Ohkouchi, H. Yaguchi, R. Ito, S. Fukatsu and Y. Shiraki, J. Cryst. Growth 124, 439 (1992).

    Article  CAS  Google Scholar 

  16. 16.

    S. Fujieda, M. Mizuta and Y. Matsumoto, Jpn. J. Appl. Phys. 26, 2067 (1987).

    Article  CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, J., Zhu, Z., Park, K.T. et al. Hot plasma chemical vapor deposition of GaN on GaAs(100) substrate. Journal of Elec Materi 26, 232–236 (1997).

Download citation

Key words

  • Chemical vapor deposition
  • GaN
  • High power radio frequency plasma