Skip to main content
Log in

LPE growth of crack-free PbSe layers on Si(100) using MBE-Grown PbSe/BaF2CaF2 buffer layers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Crack-free PbSe on (100)-oriented Si has been obtained by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. MBE is employed first to grow a PbSe/BaF2/CaF2 buffer structure on the (100)-oriented Si. A 2.5 μm thick PbSe layer is then grown by LPE. The LPE-grown PbSe displays excellent surface morphology and is continuous over the entire 8×8 mm2 area of growth. This result is surprising because of the large mismatch in thermal expansion coefficients between PbSe and Si. Previous attempts to grow crack-free PbSe by MBE alone using similar buffer structures on (100)-oriented Si have been unsuccessful. It is speculated that the large concentration of Se vacancies in the LPE-grown PbSe layer may allow dislocation climb along higher order slip planes, providing strain relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.V. Stepanov, A.I. Kouznetsov, P.V. Zyrianov, V.G. Plotnichenko, Yu. G. Selivanov and V.G. Artjushenko, Infrared Phys. and Technol. 37, 149 (1996).

    Article  CAS  Google Scholar 

  2. J.F. Becker, T.B. Sauke and M. Loewenstein, Appl. Opt. 31, 1921 (1992).

    CAS  Google Scholar 

  3. M. Tacke, B. Spanger, A. Lambrecht, P.R. Norton and H. Böttner, Appl. Phys. Lett. 53, 2260 (1988).

    Article  CAS  Google Scholar 

  4. Z. Feit, M. McDonald, R.J. Woods, V. Archambault and P. Mak, Appl. Phys. Lett. 68, 738 (1996).

    Article  CAS  Google Scholar 

  5. J.N. Walpole, A.R. Calawa, T.C. Harman and S.H. Groves, Appl. Phys. Lett. 28, 552 (1976).

    Article  CAS  Google Scholar 

  6. D.L. Partin and W. Lo, J. Appl. Phys. 52, 1579 (1981).

    Article  CAS  Google Scholar 

  7. D. Kasemset and C.G. Fonstad, Appl. Phys. Lett. 39, 872 (1981).

    Article  CAS  Google Scholar 

  8. Y. Horikoshi, M. Kawashima and H. Saito, Jpn. J. Appl. Phys. 20, L897, (1981).

    Article  CAS  Google Scholar 

  9. J.P. Moy and J.-Ph. Reboul, Infrared Phys. 22, 163 (1982).

    Article  CAS  Google Scholar 

  10. S.H. Groves, K.W. Nill and A.J. Strauss, Appl. Phys. Lett. 25, 331 (1974).

    Article  CAS  Google Scholar 

  11. A. Shahar and A. Zussman, Infrared Phys. 27, 45 (1987).

    Article  CAS  Google Scholar 

  12. Y. Nishijima and K. Shinohara, Appl. Opt. 32, 4485 (1993).

    Article  CAS  Google Scholar 

  13. Z. Feit, J. Fuchs, D. Kostyk and W Jalenak, Infrared Phys. and Technol. 37, 439 (1996).

    Article  CAS  Google Scholar 

  14. G.E. Childs, L.J. Ericks and R.L. Powell, Thermal Conductivity of Solids at Room Temperature and Below (National Bureau of Standards, 1973).

  15. C. Kittell, Introduction to Solid State Physics, 6th ed. (New York: John Wiley and Sons, 1986).

    Google Scholar 

  16. P. J. McCann and K.R. Lewelling, Optical Remote Sensing for Environmental and Process Monitoring, (Pittsburgh, PA: Air and Waste Management Association, 1996), p. 26.

    Google Scholar 

  17. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: John Wiley and Sons, 1981).

    Google Scholar 

  18. P. Müller, A. Fach, J. John, A.N. Tiwari, H. Zogg and G. Kostorz, J. Appl. Phys. 79, 1911 (1996).

    Article  Google Scholar 

  19. X.M. Fang, P. J. McCann and W.K. Liu, Thin Solid Films 272, 87 (1996).

    Article  CAS  Google Scholar 

  20. A. Ishizaka and Y. Shiraki, J. Electrochem. Soc.:Electrochem. Sci. and Technol. 133, 666 (1986).

    CAS  Google Scholar 

  21. P.J. McCann, J. Fuchs, Z. Feit and C.G. Fonstad, J. Appl. Phys. 62, 2994 (1987).

    Article  CAS  Google Scholar 

  22. P.J. McCann and S.K. Aanegola, J. Cryst. Growth 141, 376 (1994).

    Article  CAS  Google Scholar 

  23. P.J. McCann and C.G. Fonstad, J. Cryst. Growth 114, 687 (1991).

    Article  CAS  Google Scholar 

  24. D. Kapolnek, X.H. Wu, B. Heying, S. Keller, B.P. Keller, U.K. Mishra, S.P. DenBaars and J. S. Speck, Appl. Phys. Lett. 67, 1541 (1995).

    Article  CAS  Google Scholar 

  25. Powder Diffraction File (Swarthmore, PA: Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, 1986) Card: 35-0816.

  26. S. Blunier, H. Zogg and H. Weibel, Appl. Phys. Lett. 53,1512 (1988).

    Article  CAS  Google Scholar 

  27. H.E. Swanson and E. Tatge, Standard X-ray Diffraction Powder Patterns, Circular 539, vol. I (National Bureau of Standards, 1953).

  28. H.E. Swanson, N.T. Gilfrich and G.M. Ugrinic, Standard X-ray Diffraction Powder Patterns, Circular 539, vol. V (National Bureau of Standards, 1955).

  29. H. Zogg, A. Fach, C. Maissen, J. Masek and S. Blunier, Optical Engineering 33, 1440 (1994).

    Article  CAS  Google Scholar 

  30. P.J. McCann and C.G. Fonstad, J. Electron. Mater. 20, 915 (1991).

    CAS  Google Scholar 

  31. P.J. McCann, Mater. Res. Soc. Symp. Proc. 221, (Pittsburgh, PA: Mater. Res. Soc, 1991), p. 289.

    Google Scholar 

  32. C. Maissen, Ph.D. thesis, Swiss Federal Institute of Technology No. 9930(1992).

  33. P.J. McCann, S.K. Aanegola and J.E. Furneaux, Appl. Phys. Lett. 65, 2185 (1994).

    Article  CAS  Google Scholar 

  34. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., (NY: John Wiley and Sons, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strecker, B.N., McCann, P.J., Fang, X.M. et al. LPE growth of crack-free PbSe layers on Si(100) using MBE-Grown PbSe/BaF2CaF2 buffer layers. J. Electron. Mater. 26, 444–448 (1997). https://doi.org/10.1007/s11664-997-0117-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0117-5

Key words

Navigation