Skip to main content
Log in

Nanometer-scale studies of nitride/arsenide heterostructures produced by nitrogen plasma exposure of GaAs

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the nanometer-scale structure and electronic properties of nitride/arsenide superlattices produced by nitridation of a molecular beam epitaxially grown GaAs surface. Using cross-sectional scanning tunneling microscopy and spectroscopy, we find that the nitrided layers are not continuous films, but consist of groups of atomic-scale defects and larger clusters. We identify the defects and clusters as NAs and GaN with dilute As concentration, respectively. Thus, the nitrided regions consist of alloys from both sides of the miscibility gap predicted for the GaAsN system. In addition, spectroscopy on the clusters reveals an upward shift of the band edges and band gap narrowing, with significant change in the conduction band structure. We estimate the contribution of strain to band gap narrowing in terms of an elasticity calculation for a coherently strained spherical GaN cluster embedded in GaAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    Article  CAS  Google Scholar 

  2. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).

    Google Scholar 

  3. J. Neugebauer and C.G. Van de Walle, Phys. Rev. B 51, 10568 (1995).

    Article  CAS  Google Scholar 

  4. M. Weyers, M. Sato and H. Ando, Jpn. J. Appl. Phys. 31, L853 (1992).

    Google Scholar 

  5. M. Kondow, K. Uomi, K. Hosomi and T. Mozume, Jpn. J. Appl. Phys. 33, L1056 (1994).

    Google Scholar 

  6. M. Sato, Jpn. J. Appl. Phys. 34, 1080 (1995).

    Article  CAS  Google Scholar 

  7. R.J. Hauenstein, D.A. Collins, X.P. Cai, M.L. O’Steen and T.C. McGill, Appl. Phys. Lett. 66, 2861 (1995).

    Article  CAS  Google Scholar 

  8. Z.Z. Bandic, R.J. Hauenstein, M.L. O’Steen and T.C. McGill, Appl. Phys. Lett. 68, 1510 (1996).

    Article  CAS  Google Scholar 

  9. Z.Z. Bandic, R.J. Hauenstein, M.L. O’Steen and T.C. McGill, Mater. Res. Soc. Symp. Proc. 449, (Pittsburgh, PA: Mater. Res. Soc., 1997), p. 209.

    CAS  Google Scholar 

  10. R.M. Feenstra, 21st Intl. Conf. Phys. Semicond., ed. P. Jiang and H.-Z. Zheng (Singapore: World Scientific, Singapore, 1992), p. 357.

    Google Scholar 

  11. R.M. Feenstra, E.T. Yu, J.M. Woodall, P.D. Kirchner, C.L. Lin and G.D. Pettit, J. Vac. Sci. Technol. B 61, 795 (1992).

    CAS  Google Scholar 

  12. P. Mårtensson and R.M. Feenstra, Phys. Rev. B 39, 7744 (1988).

    Article  Google Scholar 

  13. R.S. Goldman, R.M. Feenstra, B.G. Briner, M.L. O’Steen and R.J. Hauenstein, Appl. Phys. Lett. 69, 3698 (1996).

    Article  CAS  Google Scholar 

  14. T. Lei, T.D. Moustakas, R.J. Graham, Y. He and S.J. Berkowitz, J. Appl. Phys. 71, 4933 (1992), and references therein.

    Article  CAS  Google Scholar 

  15. R.M. Feenstra, Phys. Rev. B 50, 4561 (1994).

    Article  CAS  Google Scholar 

  16. D.J. Wolford, J.A. Bradley, K. Fry and J. Thompson, 17th Intl. Conf. Phys. Semicond., ed. J.D. Chadi and W.A. Harrison (New York: Springer-Verlag, 1985), p. 627.

    Google Scholar 

  17. S. Sakai, Y. Ueta and Y. Terauchi, Jpn. J. Appl. Phys. 32, 4413 (1993).

    Article  CAS  Google Scholar 

  18. S.-H. Wei and A. Zunger, Phys. Rev. Lett. 76, 664 (1996).

    Article  CAS  Google Scholar 

  19. L. Bellaiche, S.-H. Wei and A. Zunger, Phys. Rev. B 54, 17568 (1996).

    Article  Google Scholar 

  20. K. Kim, W.R.L. Lambrecht and B. Segall, Phys. Rev. B 50, 1502 (1994).

    Article  CAS  Google Scholar 

  21. C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989).

    Article  Google Scholar 

  22. C.G. Van De Walle, unpublished.

  23. R.M. Feenstra, A. Vaterlaus, J.M. Woodall and G.D. Pettit, Appl. Phys. Lett. 63, 2528 (1993).

    Article  CAS  Google Scholar 

  24. J.D. Eshelby, Proc. Roy. Soc. London A 241, 376 (1957).

    Article  Google Scholar 

  25. J.P. Hirth and J. Lothe, Theory of Dislocations (Krieger, Malabar, 1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, R.S., Feenstra, R.M., Briner, B.G. et al. Nanometer-scale studies of nitride/arsenide heterostructures produced by nitrogen plasma exposure of GaAs. J. Electron. Mater. 26, 1342–1348 (1997). https://doi.org/10.1007/s11664-997-0082-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0082-z

Key words

Navigation