Advertisement

Journal of Electronic Materials

, Volume 26, Issue 11, pp 1310–1313 | Cite as

Electron cyclotron resonance plasma etching of materials for magneto-resistive random access memory applications

  • K. B. Jung
  • J. W. Lee
  • Y. D. Park
  • J. R. Childress
  • S. J. Pearton
  • M. Jenson
  • A. T. HurstJr.
Special Issue Paper

Abstract

Dry etching of multilayer magnetic thin film materials is necessary for the development of sensitive magnetic field sensors and memory devices. The use of high ion density electron cyclotron resonance (ECR) plasma etching for NiFe, NiFeCo, TaN, and CrSi in SF6/Ar, CH4/H2/Ar, and Cl2/Ar plasmas was investigated as a function of microwave source power, rf chuck power, and process pressure. All of the plasma chemistries are found to provide some enhancement in etch rates relative to pure Ar ion milling, while Cl2/Ar provided the fastest etch rate for all four materials. Typical etch rates of 3000Å/min were found at high microwave source power. Etch rates of these metals were found to increase with rf chuck power and microwave source power, but to decrease with increasing pressure in SF6/Ar, CH4/H2/Ar, and Cl2/Ar. A significant issue with Cl2/Ar is that it produces significant metal-chlorine surface residues that lead to post-etch corrosion problems in NiFe and NiFeCo. However, the concentration of these residues may be significantly reduced by in-situ H2 or O2 plasma cleaning prior to removal of the samples from the etch reactor.

Key words

Dry etching electron cyclotron resonance (ECR) plasma etching NiFe NiFeCo magnetic thin films TaN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Tsang, M. Chen, T. Yogi and K. Ju, IEEE Trans. Magn. 30, 281 (1994).CrossRefGoogle Scholar
  2. 2.
    S. Wang, F. Liu, K.D. Maranowski and M.H. Kryder, IEEE Trans. Magn. 26, 1689 (1989).Google Scholar
  3. 3.
    See for example G.A. Prinz, Ultra-Thin Magnetic Structures II, ed. B. Heinrich and J.A.C. Bland (Berlin: Springer-Verlag, 1994).Google Scholar
  4. 4.
    M.J. Vasile and C.J. Mogab, J. Vac. Sci. Technol. A 4, 1841 (1986).CrossRefGoogle Scholar
  5. 5.
    F.C.M.J. van Delft, J. Magn. Mag. Mater. 140, 2203 (1995).CrossRefGoogle Scholar
  6. 6.
    B. Gorowitz, R.J. Saia and E.W. Balch, VLSI Electronics Microstructural Science, ed. N.G. Einspruch, S.S. Cohen and G. Gildenblat, Vol. 15 (Orlando, FL: Academic Press, 1987), Chap. 4.Google Scholar
  7. 7.
    A.K. Sinha, H.S. Lindenburger, D.B. Fraser, S.P. Murarka and E.N. Fuls, IEEE Trans. Electron Dev. ED-27, 1425 (1980).Google Scholar
  8. 8.
    D.W. Hess, Plasma Chem. Plasma Proc. 2, 141 (1982).CrossRefGoogle Scholar
  9. 9.
    T.M. Mayer, J.M.E. Harper and J.J. Cuomo, J. Vac. Sci. Technol. A 3, 1779 (1985).CrossRefGoogle Scholar
  10. 10.
    J.M.E. Harper, Plasma Etching-An Introduction, ed. D.M. Manos and D.L. Flamm (San Diego, CA: Academic Press, 1989), Chap. 6.Google Scholar
  11. 11.
    K. Kinoshita, IEEE Trans. Magn. 27, 4888 (1991).CrossRefGoogle Scholar
  12. 12.
    J.W. Lee, S.J. Pearton, C J. Santana, J.R. Mileham, E.S. Lambers, C.R. Abernathy, F. Ren and W.S. Hobson, J. Electrochem. Soc. 143, 1093 (1996).CrossRefGoogle Scholar
  13. 13.
    CRC Handbook of Chemistry and Physics, 72nd Ed. (Boca Raton, FL: CRC Press, 1989).Google Scholar
  14. 14.
    M.A. Liebermann and A.J. Lichtenburg, Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons, 1994).Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 1997

Authors and Affiliations

  • K. B. Jung
    • 1
  • J. W. Lee
    • 1
  • Y. D. Park
    • 1
  • J. R. Childress
    • 1
  • S. J. Pearton
    • 1
  • M. Jenson
    • 2
  • A. T. HurstJr.
    • 2
  1. 1.Department of Materials Science & EngineeringUniversity of FloridaGainesville
  2. 2.Solid State Electronics CenterHoneywell Inc.Plymouth

Personalised recommendations