Skip to main content
Log in

PANI/CD/SnO2 Ternary Nanocomposite for Efficient Room-Temperature Ammonia Detection

  • 28th International Conference on Nuclear Tracks and Radiation Measurements
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report a unique combination of three components in the form of a ternary nanocomposite, PANI/CD/SnO2, for ammonia gas sensing at room temperature. This nanocomposite was synthesized via in situ chemical oxidative polymerization of aniline, in which other components were incorporated to form binary PANI/CD and ternary PANI/CD/SnO2 nanocomposites. The fabrication process initially involved optimization of the PANI/CD nanocomposite and then incorporation of an optimized amount of SnO2 to finally produce the ternary PANI/CD/SnO2 nanocomposite. The ternary composite demonstrated better sensing properties than those of both PANI/CD (1:0.5) and pristine PANI in terms of sensitivity, selectivity, and response time over a concentration range of 5–100 ppm NH3. The response of the PANI/CD/SnO2 nanocomposite was 21.6% towards 100 ppm NH3, which was higher than that of pure PANI and the PANI/CD nanocomposite. The ternary composite exhibited higher selectivity for ammonia over other gases as compared to PANI and the PANI/CD (1:0.5) nanocomposite. The PANI/CD/SnO2 composite also achieved a shorter response time (94 s) than pure PANI (162 s) and the PANI/CD (144 s) composite, and it demonstrated a nearly linear variation in response with the analyte concentration. High repeatability and long-term stability further enhanced the possibility of real-world application of the proposed ternary nanocomposite for practical room-temperature ammonia sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Zulkifli, H. Abu Hasan, S.R. Sheikh Abdullah, and M.H. Muhamad, A review of ammonia removal using a biofilm-based reactor and its challenges. J. Environ. Manag. 315, 115162 (2022).

    Article  CAS  Google Scholar 

  2. S.D. Lawaniya, S. Kumar, Y. Yu, and K. Awasthi, Ammonia sensing properties of PPy nanostructures (urchins/flowers) towards low-cost and flexible gas sensors at room temperature. Sens. Actuators B Chem. 382, 133566 (2023).

    Article  CAS  Google Scholar 

  3. X. Wang, S. Meng, M. Tebyetekerwa, W. Weng, J. Pionteck, B. Sun, Z. Qin, and M. Zhu, Nanostructured polyaniline/poly(styrene-butadiene-styrene) composite fiber for use as highly sensitive and flexible ammonia sensor. Synth. Met. 233, 86 (2017).

    Article  CAS  Google Scholar 

  4. S.D. Lawaniya, N. Meena, S. Kumar, Y.-T. Yu, and K. Awasthi, Effect of MWCNTs incorporation into polypyrrole (PPy) on ammonia sensing at room temperature. IEEE Sens. J. 23, 1837 (2023).

    Article  CAS  Google Scholar 

  5. R.P. Padappayil and J. Borger, Ammonia Toxicity (St. Petersburg: StatPearls, 2024).

    Google Scholar 

  6. Y. Li, L. Pan, X. Zeng, R. Zhang, X. Li, J. Li, H. Xing, and J. Bao, Ammonia exposure causes the imbalance of the gut-brain axis by altering gene networks associated with oxidative metabolism, inflammation and apoptosis. Ecotoxicol. Environ. Saf. 224, 112668 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. M.-J. Chan, Y.-J. Li, C.-C. Wu, Y.-C. Lee, H.-W. Zan, H.-F. Meng, M.-H. Hsieh, C.-S. Lai, and Y.-C. Tian, Breath ammonia is a useful biomarker predicting kidney function in chronic kidney disease patients. Biomedicines 8, 468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. Hibbard and A.J. Killard, Breath ammonia analysis: clinical application and measurement. Crit. Rev. Anal. Chem. 41, 21 (2011).

    Article  CAS  Google Scholar 

  9. M. Poloju, N. Jayababu, and M.V. RamanaReddy, Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B 227, 61 (2018).

    Article  CAS  Google Scholar 

  10. S.D. Lawaniya, S. Kumar, Y. Yu, and K. Awasthi, Flexible, low-cost, and room temperature ammonia sensor based on polypyrrole and functionalized MWCNT nanocomposites in extreme bending conditions. ACS Appl. Polym. Mater. 5, 1945 (2023).

    Article  CAS  Google Scholar 

  11. A. Husain, S. Ahmad, M.U. Shariq, and M.M.A. Khan, Ultra-sensitive, highly selective and completely reversible ammonia sensor based on polythiophene/SWCNT nanocomposite. Materialia 10, 100704 (2020).

    Article  CAS  Google Scholar 

  12. S.D. Lawaniya, S. Kumar, Y. Yu, H.-G. Rubahn, Y.K. Mishra, and K. Awasthi, Functional nanomaterials in flexible gas sensors: recent progress and future prospects. Mater. Today Chem. 29, 101428 (2023).

    Article  CAS  Google Scholar 

  13. X. Liu, W. Zheng, R. Kumar, M. Kumar, and J. Zhang, Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 462, 214517 (2022).

    Article  CAS  Google Scholar 

  14. N.L. Torad and M.M. Ayad, Gas Sensors Based on Conducting Polymers (London: IntechOpen, 2019).

    Google Scholar 

  15. C. Bavatharani, E. Muthusankar, S.M. Wabaidur, Z.A. Alothman, K.M. Alsheetan, M. Mana AL-Anazy, and D. Ragupathy, Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: a review. Synth. Met. 271, 116609 (2021).

    Article  CAS  Google Scholar 

  16. J. Cai, C. Zhang, A. Khan, C. Liang, and W.-D. Li, Highly transparent and flexible polyaniline mesh sensor for chemiresistive sensing of ammonia gas. RSC Adv. 8, 5312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Qureshi, A. Altindal, and A. Mergen, Electrical and gas sensing properties of Li and Ti codoped NiO/PVDF thin film. Sens. Actuators B Chem. 138, 71 (2009).

    Article  CAS  Google Scholar 

  18. S.D. Lawaniya, S. Kumar, Y. Yu, Y.K. Mishra, and K. Awasthi, Complex and Composite Metal Oxides for Gas VOC and Humidity Sensors Volume 1 (Amsterdam: Elsevier, 2024), pp.107–150.

    Book  Google Scholar 

  19. A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S.W. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9, 393 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. N. Nath, A. Kumar, S. Chakroborty, S. Soren, A. Barik, K. Pal, and F.G. de Souza, Carbon nanostructure embedded novel sensor implementation for detection of aromatic volatile organic compounds: an organized review. ACS Omega 8, 4436 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P. Dariyal, S. Sharma, G.S. Chauhan, B.P. Singh, and S.R. Dhakate, Recent trends in gas sensing via carbon nanomaterials: outlook and challenges. Nanoscale Adv. 3, 6514 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. S.-Z. Hong, Q.-Y. Huang, and T.-M. Wu, Facile synthesis of polyaniline/carbon-coated hollow indium oxide nanofiber composite with highly sensitive ammonia gas sensor at the room temperature. Sensors 22, 1570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S.D. Lawaniya, S. Kumar, Y. Yu, and K. Awasthi, Nitrogen-doped carbon nano-onions/polypyrrole nanocomposite based low-cost flexible sensor for room temperature ammonia detection. Sci. Rep. 14, 7904 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. L.A. Panes-Ruiz, M. Shaygan, Y. Fu, Y. Liu, V. Khavrus, S. Oswald, T. Gemming, L. Baraban, V. Bezugly, and G. Cuniberti, Toward highly sensitive and energy efficient ammonia gas detection with modified single-walled carbon nanotubes at room temperature. ACS Sens. 3, 79 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. W. Muangrat, W. Wongwiriyapan, V. Yordsri, T. Chobsilp, S. Inpaeng, C. Issro, O. Domanov, P. Ayala, T. Pichler, and L. Shi, Unravel the active site in nitrogen-doped double-walled carbon nanotubes for nitrogen dioxide gas sensor. Phys. Status Solidi (2018). https://doi.org/10.1002/pssa.201800004.

    Article  Google Scholar 

  26. Y. Seekaew, W. Pon-On, and C. Wongchoosuk, Ultrahigh selective room-temperature ammonia gas sensor based on tin–titanium dioxide/reduced graphene/carbon nanotube nanocomposites by the solvothermal method. ACS Omega 4, 16916 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Ghosh, A. Midya, S. Santra, S.K. Ray, and P.K. Guha, Chemically reduced graphene oxide for ammonia detection at room temperature. ACS Appl. Mater. Interfaces 5, 7599 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. O. Tsymbalenko, S. Lee, Y.-M. Lee, Y.-S. Nam, B.C. Kim, J.Y. Kim, and K.-B. Lee, High-sensitivity NH3 gas sensor using pristine graphene doped with CuO nanoparticles. Microchim. Acta 190, 134 (2023).

    Article  CAS  Google Scholar 

  29. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens .Actuators B Chem. 178, 485 (2013).

    Article  CAS  Google Scholar 

  30. R. Paul, B. Das, and R. Ghosh, Novel approaches towards design of metal oxide based hetero-structures for room temperature gas sensor and its sensing mechanism: a recent progress. J. Alloys Compd. 941, 168943 (2023).

    Article  CAS  Google Scholar 

  31. J.N. Gavgani, H.S. Dehsari, A. Hasani, M. Mahyari, E.K. Shalamzari, A. Salehi, and F.A. Taromi, A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) nanocomposite. RSC Adv. 5, 57559 (2015).

    Article  CAS  Google Scholar 

  32. M. Hakimi, A. Salehi, F.A. Boroumand, and N. Mosleh, Fabrication of a room temperature ammonia gas sensor based on polyaniline With N-doped graphene quantum dots. IEEE Sens. J. 18, 2245 (2018).

    Article  CAS  Google Scholar 

  33. J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, and A. Salehi, Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators B Chem. 229, 239 (2016).

    Article  CAS  Google Scholar 

  34. Y. Qin, X. Liu, and J. Xie, Humidity-enhanced NH3 sensor based on carbon quantum dots-modified SnS. Appl. Surf. Sci. 634, 157612 (2023).

    Article  CAS  Google Scholar 

  35. Q. Feng, H. Zhang, Y. Shi, X. Yu, and G. Lan, Preparation and gas sensing properties of PANI/SnO2 hybrid material. Polymers (Basel) 13, 1360 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. S. Dua, P. Kumar, B. Pani, A. Kaur, M. Khanna, and G. Bhatt, Stability of carbon quantum dots: a critical review. RSC Adv. 13, 13845 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. Kaur, S.D. Lawaniya, S. Kumar, N. Saini, and K. Awasthi, Nanoarchitectonics of polyaniline–zinc oxide (PANI–ZnO) nanocomposite for enhanced room temperature ammonia sensing. Appl. Phys. A 129, 765 (2023).

    Article  CAS  Google Scholar 

  38. S.-Z. Hong, Q.-Y. Huang, and T.-M. Wu, The room temperature highly sensitive ammonia gas sensor based on polyaniline and nitrogen-doped graphene quantum dot-coated hollow indium oxide nanofiber composite. Polymers (Basel) 13, 3676 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. C.-H. Hsieh, L.-H. Xu, J.-M. Wang, and T.-M. Wu, Fabrication of polypyrrole/tin oxide/graphene nanoribbon ternary nanocomposite and its high-performance ammonia gas sensing at room temperature. Mater. Sci. Eng. B 272, 115317 (2021).

    Article  CAS  Google Scholar 

  40. S.K. Gautam, N.A. Gokhale, and S. Panda, Mechanism of NH3 gas sensing by SnO2/PANI nanocomposites: charge transport and temperature dependence study. Flex. Print. Electron. 7, 035022 (2022).

    Article  CAS  Google Scholar 

  41. P.G. Choi, A. Tsuruta, and Y. Masuda, Nanosheet-type tin oxide on carbon nanotube for gas sensing. Chem. Eng. J. 472, 144799 (2023).

    Article  CAS  Google Scholar 

  42. K. Holá, M. Sudolská, S. Kalytchuk, D. Nachtigallová, A.L. Rogach, M. Otyepka, and R. Zbořil, Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 11, 12402 (2017).

    Article  PubMed  Google Scholar 

  43. G. Pandey, S.D. Lawaniya, S. Kumar, P.K. Dwivedi, and K. Awasthi, A highly selective, efficient hydrogen gas sensor based on bimetallic (Pd–Au) alloy nanoparticle (NP)-decorated SnO2 nanorods. J. Mater. Chem. A 11, 26687 (2023).

    Article  CAS  Google Scholar 

  44. A. Kumar, V. Kumar, P.K. Sain, M. Kumar, and K. Awasthi, Synthesis and characterization of polyaniline membranes with—secondary amine additive containing N, N′-dimethyl propylene urea for fuel cell application. Int. J. Hydrog. EnergyHydrog. Energy 43, 21715 (2018).

    Article  CAS  Google Scholar 

  45. A.F. Shaikh, M.S. Tamboli, R.H. Patil, A. Bhan, J.D. Ambekar, and B.B. Kale, Bioinspired carbon quantum dots: an antibiofilm agents. J. Nanosci. Nanotechnol. 19, 2339 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. A.I. Fatya, M. Reza, R.R. Sunarya, and V. Suendo, Synthesis of polyaniline/electrochemically exfoliated graphene composite as counter-electrode in dye-sensitized solar cell. Polym. Technol. Mater. 59, 1370 (2020).

    CAS  Google Scholar 

  47. H. Salah Abdullah, Electrochemical polymerization and Raman study of polypyrrole and polyaniline thin films. Int. J. Phys. Sci. 7, 5468 (2012).

    Google Scholar 

  48. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Mater. Interfaces 2, 821 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Z. Li, Y. Shen, Y. Li, F. Zheng, L. Liu, X. Liu, and D. Zou, Preparation of polyaniline hollow microspheres/zinc composite and its application in lithium battery. High Perform. Polym. 31, 178 (2019).

    Article  CAS  Google Scholar 

  50. H. Zhu, S. Peng, and W. Jiang, Electrochemical properties of PANI as single electrode of electrochemical capacitors in acid electrolytes. Sci. World J. 2013, 1 (2013).

    Article  Google Scholar 

  51. F. Kurniawan and R. Rahmi, Synthesis of SnO2 nanoparticles by high potential electrolysis. Bull. Chem. React. Eng. Catal. 12, 281 (2017).

    Article  Google Scholar 

  52. S.A. Saleh, A.A. Ibrahim, and S.H. Mohamed, Structural and optical properties of nanostructured Fe-doped SnO2. Acta Phys. Pol. A 129, 1220 (2016).

    Article  CAS  Google Scholar 

  53. M. Alam, N.M. Alandis, A.A. Ansari, and M.R. Shaik, Optical and electrical studies of polyaniline/ZnO nanocomposite. J. Nanomater. 2013, 1 (2013).

    Google Scholar 

  54. F. Habtamu, S. Berhanu, and T. Mender, Polyaniline supported Ag-doped ZnO nanocomposite: synthesis, characterization, and kinetics study for photocatalytic degradation of malachite green. J. Chem. 2021, 1 (2021).

    Article  Google Scholar 

  55. J.O. Adeyemi and D.C. Onwudiwe, SnS2 and SnO2 nanoparticles obtained from organotin(IV) dithiocarbamate complex and their photocatalytic activities on methylene blue. Materials (Basel) 13, 2766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. K.A. Mirica, J.M. Azzarelli, J.G. Weis, J.M. Schnorr, and T.M. Swager, Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proc. Natl. Acad. Sci. (2013). https://doi.org/10.1073/pnas.1307251110.

    Article  PubMed  PubMed Central  Google Scholar 

  57. K.K. Saravanan, P. Siva Karthik, P.R. Mirtha, J. Balaji, and B. Rajeshkanna, A one-pot hydrothermal-induced PANI/SnO2 and PANI/SnO2/rGO ternary composites for high-performance chemiresistive-based H2S and NH3 gas sensors. J. Mater. Sci. Mater. Electron. 31, 8825 (2020).

    Article  CAS  Google Scholar 

  58. X. Chen, X. Chen, X. Ding, X. Yu, and X. Yu, Enhanced ammonia sensitive properties and mechanism research of PANI modified with hydroxylated single-walled nanotubes. Mater. Chem. Phys. 226, 378 (2019).

    Article  CAS  Google Scholar 

  59. S.B. Kulkarni, Y.H. Navale, S.T. Navale, F.J. Stadler, and V.B. Patil, Room temperature ammonia gas sensing properties of polyaniline nanofibers. J. Mater. Sci. Mater. Electron. 30, 8371 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlendra Awasthi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 775 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiya, Lawaniya, S.D., Pandey, G. et al. PANI/CD/SnO2 Ternary Nanocomposite for Efficient Room-Temperature Ammonia Detection. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11168-9

Keywords

Navigation