Skip to main content
Log in

Gate Leakage Suppression and Threshold Voltage Stability Improvement in GaN-Based Enhancement-Mode HEMTs on Ultrathin-Barrier AlGaN/GaN Heterostructures with a p-Doping-Free GaN Cap

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

GaN-based enhancement-mode high-electron-mobility transistors (HEMTs) with a 25-nm-thick undoped GaN (u-GaN) cap underneath the gate metallization on ultrathin-barrier (UTB) AlGaN (<6 nm)/GaN heterostructures have been demonstrated. The presence of a thick u-GaN cap contributes to the increased depletion of the two-dimensional electron gas (2DEG) beneath the gate by polarization effects, resulting in an improvement of the threshold voltage (Vth) and a suppression of the off-state gate leakage (Ioff). The UTB HEMTs with a thick u-GaN cap exhibit normally-off operation with a Vth of 0.5 V, a maximum on-current of 232.1 mA/mm, an Ioff of 10−6 mA/mm, and a gate voltage swing of 7 V at a drain bias of 10 V. Thanks to the p-doping-free GaN cap, the device demonstrates excellent Vth stability under positive gate bias, which positions it as a promising candidate for future low-voltage GaN power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. B.J. Baliga, Gallium nitride devices for power electronic applications. Semicond. Sci. Tech. 28(7), 074011 (2013).

    Article  Google Scholar 

  2. M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, GaN on Si technologies for power switching devices. IEEE Trans. Electron Devices 60(10), 3053 (2013).

    Article  CAS  Google Scholar 

  3. K.J. Chen, O. Häberlen, A. Lidow, C. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, GaN-on-Si power technology: devices and applications. IEEE Trans. Electron Devices 64(3), 779 (2017).

    Article  Google Scholar 

  4. M. Kuzuhara and H. Tokuda, Low-loss and high-voltage III-nitride transistors for power switching applications. IEEE Trans. Electron Devices 62(2), 405 (2015).

    Article  CAS  Google Scholar 

  5. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, Gate injection transistor (GIT): a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 54(12), 3393 (2007).

    Article  CAS  Google Scholar 

  6. Q. Zhou, A. Zhang, B. Chen, Y. Jin, Y. Shi, Z. Wang, W. Chen, and B. Zhang, 7.6 V threshold voltage high-performance normally-off Al2O3/GaN MOSFET achieved by interface charge engineering. IEEE Electron Device Lett. 37(2), 165 (2016).

    Article  CAS  Google Scholar 

  7. T. Oka and T. Nozawa, AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications. IEEE Electron Device Lett. 29(7), 668 (2008).

    Article  CAS  Google Scholar 

  8. J. He, W. Cheng, Q. Wang, K. Cheng, H. Yu, and Y. Chai, Recent advances in GaN-based power HEMT devices. Adv. Electron. Mater. 7(4), 2001045 (2021).

    Article  CAS  Google Scholar 

  9. O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, Normally-off AlGaN/GaN HFET with p-type GaN Gate and AlGaN buffer, in 2010 22nd International Symposium on Power Semiconductor Devices & IC’s (ISPSD) (IEEE, 2010), p. 347

  10. Y. Zhong, S. Su, X. Chen, Y. Zhou, H. Gao, X. Zhan, X. Guo, S. Zhang, and Q. Sun, Gate reliability and its degradation mechanism in the gate. IEEE J. Emerg. Sel. Top. Power Electron. 9(3), 3715 (2021).

    Article  Google Scholar 

  11. X. Dai, Z. Ji, Q. Jiang, S. Huang, J. Fan, C. Feng, H. Jin, X. Wang, and X. Liu, Suppression of reverse leakage in enhancement-mode GaN high-electron-mobility transistor by extended PGaN technology. Phys. Status Solidi (a) 220(16), 2200692 (2023).

    Article  CAS  Google Scholar 

  12. Z. Xu, J. Wang, J. Liu, C. Jin, Y. Cai, Z. Yang, M. Wang, M. Yu, B. Xie, W. Wu, X. Ma, J. Zhang, and Y. Hao, Demonstration of normally-off recess-gated AlGaN/GaN MOSFET using GaN cap layer as recess mask. IEEE Electron Device Lett. 35(12), 1197 (2014).

    Article  CAS  Google Scholar 

  13. J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang, and K. J. Chen, Enhancement-mode GaN double-channel MOS-HEMT with low on-resistance and robust gate recess, in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), p. 9.4.1

  14. Y. Shi, S. Huang, Q. Bao, X. Wang, K. Wei, H. Jiang, J. Li, C. Zhao, S. Li, Y. Zhou, H. Gao, Q. Sun, H. Yang, J. Zhang, W. Chen, Q. Zhou, B. Zhang, and X. Liu, Normally off GaN-on-Si MIS-HEMTs fabricated with LPCVD-SiNx passivation and high-temperature gate recess. IEEE Trans. Electron Devices 63(2), 614 (2016).

    Article  CAS  Google Scholar 

  15. K. J. Chen, L. Yuan, M. Wang, H. Chen, S. Huang, Q. Zhou, C. Zhou, B. Li, and J. Wan, Physics of fluorine plasma ion implantation for GaN normally-off HEMT technology, in 2011 International Electron Devices Meeting (IEDM) (IEEE, 2011), p 19.4.1

  16. C. Liu, S. Yang, Z. Tang, H. Wang, Q. Jiang, and K.J. Chen, Thermally stable enhancement-mode GaN metal-isolator-semiconductor high-electron-mobility transistor with partially recessed fluorine-implanted barrier. IEEE Electron Device Lett. 36(4), 318 (2015).

    Article  CAS  Google Scholar 

  17. S. Huang, X. Liu, X. Wang, X. Kang, J. Zhang, Q. Bao, K. Wei, Y. Zheng, C. Zhao, H. Gao, Q. Sun, Z. Zhang, and K.J. Chen, High uniformity normally-off GaN MIS-HEMTs fabricated on ultra-thin-barrier AlGaN/GaN heterostructure. IEEE Electron Device Lett. 37(12), 1617 (2016).

    Article  CAS  Google Scholar 

  18. S. Huang, X. Liu, X. Wang, X. Kang, J. Zhang, J. Fan, J. Shi, K. Wei, Y. Zheng, H. Gao, Q. Sun, M. Wang, B. Shen, and K.J. Chen, Ultrathin-barrier AlGaN/GaN heterostructure: a recess-free technology for manufacturing high-performance GaN-on-Si power devices. IEEE Trans. Electron Devices 65(1), 207 (2018).

    Article  CAS  Google Scholar 

  19. F. Benkhelifa, S. Müller, V.M. Polyakov, and O. Ambacher, Normally-off AlGaN/GaN/AlGaN double heterostructure FETs with a thick undoped GaN gate layer. IEEE Electron Device Lett. 36(9), 905 (2015).

    Article  CAS  Google Scholar 

  20. C. Zhang and R. Yao, An enhancement-mode AlInN/GaN HEMTs combining intrinsic GaN cap layer and AlGaN back barrier layer. Solid State Commun. 336, 115150 (2023).

    Article  Google Scholar 

  21. M. Grundman, BandEng Poisson-Schrödinger Solver Software. http://my.ece.ucsb.edu/mggrundman/bandeng (2004).

  22. R. Zhao, S. Huang, X. Wang, Y. Li, J. Shi, Y. Zhang, J. Fan, H. Yin, X. Chen, K. Wei, S. Wu, X. Yang, B. Shen, and X. Liu, Interface charge engineering in down-scaled AlGaN (<6 nm)/GaN heterostructure for fabrication of GaN-based power HEMTs and MIS-HEMTs. Appl. Phys. Lett. 116(10), 103502 (2020).

    Article  CAS  Google Scholar 

  23. Z. Tang, S. Huang, Q. Jiang, S. Liu, C. Liu, and K.J. Chen, High-voltage (600-V) low-leakage low-current-collapse AlGaN/GaN HEMTs with AlN/SiNx passivation. IEEE Electron Device Lett. 34(3), 366 (2013).

    Article  CAS  Google Scholar 

  24. M. Hua, Y. Lu, S. Liu, C. Liu, K. Fu, Y. Cai, B. Zhang, and K.J. Chen, Compatibility of AlN/SiNx passivation with LPCVD-SiNx gate dielectric in GaN-based MIS-HEMT. IEEE Electron Device Lett. 37(3), 265 (2016).

    Article  CAS  Google Scholar 

  25. S. Yang, Z. Tang, M. Hua, Z. Zhang, J. Wei, Y. Lu, and K.J. Chen, Investigation of SiNx and AlN passivation for AlGaN/GaN high-electron-mobility transistors: role of interface traps and polarization charges. IEEE J. Electron Devices Soc. 8, 358 (2020).

    Article  CAS  Google Scholar 

  26. X. Li, B. Bakeroot, Z. Wu, N. Amirifar, S. You, N. Posthuma, M. Zhao, H. Liang, G. Groeseneken, and S. Decoutere, Observation of dynamic VTH of p-GaN gate HEMTs by fast sweeping characterization. IEEE Electron Device Lett. 41(4), 577 (2020).

    Article  CAS  Google Scholar 

  27. J. He, G. Tang, and K.J. Chen, VTH instability of p-GaN gate HEMTs under static and dynamic gate stress. IEEE Electron Device Lett. 39(10), 1576 (2018).

    CAS  Google Scholar 

  28. C. Feng, Q. Jiang, S. Huang, X. Wang, and X. Liu, Gate-bias-accelerated VTH recovery on Schottky-type p-GaN gate AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 70(9), 4591 (2023).

    Article  CAS  Google Scholar 

  29. C.H. Chen, S.M. Baier, D.K. Arch, and M.S. Shur, A new and simple model for GaAs heterojunction FET gate characteristics. IEEE Trans. Electron Devices 35(5), 570 (1988).

    Article  Google Scholar 

Download references

Funding

This study was funded in part by the National Key Research and Development Program of China under grant 2022YFB3604400; in part by the Youth Innovation Promotion Association of Chinese Academy Sciences (CAS); in part by the CAS-Croucher Funding Scheme under grant CAS22801; in part by the National Natural Science Foundation of China under grants 62334012, 62074161, 62004213, U20A20208, and 62304252; in part by the Beijing Municipal Science and Technology Commission project under grants Z201100008420009 and Z211100007921018; in part by the University of CAS; and in part by IMECAS-HKUST-Joint Laboratory of Microelectronics.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yuhao Wang, Sen Huang, Qimeng Jiang, Xinhua Wang, Fuqiang Guo, Chao Feng, Jie Fan, Haibo Yin, Xinguo Gao, Ke Wei, Yingkui Zheng, and Xinyu Liu. The first draft of the manuscript was written by Yuhao Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sen Huang or Qimeng Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant financial or non-financial interests to disclose.

Ethical Approval

This research does not involve human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, S., Jiang, Q. et al. Gate Leakage Suppression and Threshold Voltage Stability Improvement in GaN-Based Enhancement-Mode HEMTs on Ultrathin-Barrier AlGaN/GaN Heterostructures with a p-Doping-Free GaN Cap. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11156-z

Keywords

Navigation