Skip to main content
Log in

Simple Synthesis of Au-WO3 Nanoparticles with Enhanced Photocatalytic Performance

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metal oxide semiconductors have been proven to be a very effective photocatalytic material. In this study, Au-WO3 was successfully synthesized through a microwave irradiation-assisted one-pot method. The results demonstrated that the hydration degree of WO3·nH2O could be controlled by Au, and the nanorods could be refined. When the optimum Au modification level was 5.4 wt.%, the specific surface area of WO3·nH2O increased from 36.67 m2 g−1 to 71.72 m2 g−1, indicating that active sites on the catalyst surface were added. The photocatalytic degradation of rhodamine B (RhB) is considered to assess the photocatalytic performance of the Au-WO3 nanoparticles under visible light. The deterioration of the sample increased initially, then decreased as the Au level increased. The photocatalytic degradation capacity was strongest when the Au content was 5.4 wt.%, and the degradation rate was 0.0084 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    CAS  PubMed  Google Scholar 

  2. M. Rafique, S. Hajra, M. Irshad, M. Usman, M. Imran, M.A. Assiri, and W.M. Ashraf, Hydrogen production using TiO2-based photocatalysts: a comprehensive review. ACS Omega 8(29), 25640 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Liao, L. Su, Y. Deng, S. Xiong, R. Tang, Z. Wu, C. Ding, L. Yang, and D. Gong, Strategies to improve WO3-based photocatalysts for wastewater treatment: a review. J. Mater. Sci. 56, 14416 (2021).

    CAS  Google Scholar 

  4. J.C. Murillo-Sierra, A. Hernández-Ramírez, L. Hinojosa-Reyes, and L. Guzmán-Mar, A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications. Chem. Eng. J. Adv. 5, 100070 (2021).

    CAS  Google Scholar 

  5. V. Dutta, S. Sharma, P. Raizada, V. Thakur, A. Khan, V. Saini, A. Asiri, and P. Singh, An overview on WO3 based photocatalyst for environmental remediation. J. Environ. Chem. Eng. 9, 105018 (2021).

    CAS  Google Scholar 

  6. Y. Shan, X. Tang, D. Shen, Z. Zhou, and M. Wang, A review of tungsten trioxide (WO3)-based materials for antibiotics removal via photocatalysis. Ecotox. Environ. Safe. 259, 114988 (2023).

    CAS  Google Scholar 

  7. N.R. Khalid, S. Ilyas, F. Ali, T. Iqbal, M. Rafque, M. Imran, and M.A. Assiri, Novel Sn-doped WO3 photocatalyst to degrade the organic pollutants prepared by green synthesis approach. Electron. Mater. Lett. 20(1), 85 (2024).

    CAS  Google Scholar 

  8. L. Zhang and M. Jaroniec, Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Appl. Surf. Sci. 430, 2 (2018).

    CAS  Google Scholar 

  9. M.W. Nugraha, N.H. Zainal Abidin, Supandi, and N.S. Sambudi, Synthesis of tungsten oxide/amino-functionalized sugarcane bagasse derived-carbon quantum dots (WO3/N-CQDs) composites for methylene blue removal. Chemosphere 277, 130300 (2021).

    CAS  PubMed  Google Scholar 

  10. Y. Li, Z. Liu, Z. Guo, M. Ruan, X. Li, and Y. Liu, Efficient WO3 photoanode modified by Pt layer and plasmonic Ag for enhanced charge separation and transfer to promote photoelectrochemical performances. ACS Sustain. Chem. Eng. 7, 12582 (2019).

    CAS  Google Scholar 

  11. V.A. Tran, T.P. Nguyen, V.T. Le, T. Kim, S. Lee, and C.T. Nguyen, Excellent photocatalytic activity of ternary nanocomposites under solar simulation irradiation. J. Sci. Adv. Mater. Dev. 6, 108 (2021).

    CAS  Google Scholar 

  12. Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma, and J.Q. Xu, Au Nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J. Phys. Chem. C 114, 2049 (2010).

    CAS  Google Scholar 

  13. S. Yi̇ği̇t Gezgi̇n and H.Ş Kılıç, An improvement on the conversion efficiency of Si/CZTS solar cells by LSPR effect of embedded plasmonic Au nanoparticles. Opt. Mater. 101, 109760 (2010).

    Google Scholar 

  14. M.S. Rodrigues, D. Costa, R.P. Domingues, M. Apreutesei, P. Pedrosa, N. Martin, V.M. Correlo, R.L. Reis, E. Alves, N.P. Barradas, P. Sampaio, J. Borges, and F. Vaz, Optimization of nanocomposite Au/TiO2 thin films towards LSPR optical-sensing. Appl. Surf. Sci. 438, 74 (2018).

    CAS  Google Scholar 

  15. R.A. Capeli, C.J. Dalmaschio, S.R. Teixeira, V.R. Mastelaro, A.J. Chiquito, E. Longo, and F.M. Pontes, One-step controllable synthesis of three-dimensional WO3 hierarchical architectures with different morphologies decorated with silver nanoparticles: enhancing the photocatalytic activity. RSC Adv. 10, 6625 (2020).

    CAS  Google Scholar 

  16. M. Humayun, H. Ullah, J. Cao, W. Pi, Y. Yuan, S. Ali, A.A. Tahir, P. Yue, A. Khan, Z. Zheng, Q. Fu, and W. Luo, Experimental and DFT studies of Au deposition over WO3/g-C3N4 Z-Scheme heterojunction. Nano-Micro Lett. 12, 1 (2020).

    Google Scholar 

  17. Y. Wang, Y. Wang, J. Zhao, M. Chen, X. Huang, and Y. Xu, Efficient production of H2O2 on Au/WO3 under visible light and the influencing factors. Appl. Catal. B Environ. 284, 119691 (2021).

    CAS  Google Scholar 

  18. G. Yang and S.-J. Park, Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials 12, 1177 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. T. Velempini, E. Prabakaran, and K. Pillay, Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water-a review. Mater. Today Chem. 19, 100380 (2021).

    CAS  Google Scholar 

  20. M. Sumathi, A. Prakasam, and P.M. Anbarasan, High capable visible light driven photocatalytic activity of WO3/g-C3N4 hetrostructure catalysts synthesized by a novel one step microwave irradiation route. J. Mater. Sci. Mater. Electron. 30, 3294 (2019).

    CAS  Google Scholar 

  21. P. Nagaraju, A. Alsalme, A.M. Alkathiri, and R. Jayavel, Rapid synthesis of WO3/graphene nanocomposite via in-situ microwave method with improved electrochemical properties. J. Phys. Chem. Solids 120, 250 (2018).

    CAS  Google Scholar 

  22. Y. Hayashi, Pot economy and one-pot synthesis. Chem. Sci. 7, 866 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. R.A. Senthil, S. Osman, J. Pan, A. Khan, V. Yang, T.R. Kumar, Y. Sun, Y. Lin, X. Liu, and A. Manikandan, One-pot preparation of AgBr/α-Ag2WO4 composite with superior photocatalytic activity under visible-light irradiation. Colloids Surf. A 586, 124079 (2020).

    CAS  Google Scholar 

  24. H. Singh, A. Kumar, A. Thakur, P. Kumar, V.H. Nguyen, D.V. Vo, A. Sharma, and D. Kumar, One-pot synthesis of magnetite-ZnO nanocomposite and its photocatalytic activity. Top. Catal. 63, 1097 (2020).

    CAS  Google Scholar 

  25. D.P. DePuccio, P. Botella, B. O’Rourke, and C.C. Landry, Degradation of methylene blue using porous WO3, SiO2–WO3, and their Au-loaded analogs: adsorption and photocatalytic studies. ACS Appl. Mater. Interfaces 7, 1987 (2015).

    CAS  PubMed  Google Scholar 

  26. I. Khan and A. Qurashi, Sonochemical-assisted in situ electrochemical synthesis of Ag/α-Fe2O3/TiO2 nanoarrays to harness energy from photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 6, 11235 (2018).

    CAS  Google Scholar 

  27. C.H. Han and B.G. Min, Superhydrophobic and antibacterial properties of cotton fabrics coated with copper nanoparticles through sonochemical process. Fiber. Polym. 21, 785 (2020).

    CAS  Google Scholar 

  28. J. Zhou, Z. You, W. Xu, Z. Su, Y. Qiu, L. Gao, C. Yin, and L. Lan, Microwave irradiation directly excites semiconductor catalyst to produce electric current or electron-holes pairs. Sci. Rep. 9, 1 (2019).

    Google Scholar 

  29. K. Cheng, W. Sun, H.-Y. Jiang, J. Liu, and J. Lin, Sonochemical deposition of Au nanoparticles on different facets-dominated anatase TiO2 single crystals and resulting photocatalytic performance. J. Phys. Chem. C 117, 14600 (2013).

    CAS  Google Scholar 

  30. M.A. Dheyab, A.A. Aziz, M.S. Jameel, P.M. Khaniabadi, and B. Mehrdel, Mechanisms of effective gold shell on Fe3O4 core nanoparticles formation using sonochemistry method. Ultrason. Sonochem. 64, 104865 (2020).

    CAS  PubMed  Google Scholar 

  31. M. Shaban, M. Zayed, and H. Hamdy, Nanostructured ZnO thin films for self-cleaning applications. RSC Adv. 7, 617 (2017).

    CAS  Google Scholar 

  32. A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251 (2011).

    CAS  Google Scholar 

  33. T. Li, Y. Shen, S. Zhao, P. Zhou, X. Zhong, S. Gao, D. Wei, and F. Meng, Synthesis and in-situ noble metal modification of WO3·0.33H2O nanorods from a tungsten-containing mineral for enhancing NH3 sensing performance. Chin. Chem. Lett. 31, 2037 (2020).

    CAS  Google Scholar 

  34. G.B.X. Harris, Quantitative measurement of preferred orientation in rolled uranium bars. Philos. Mag. 43, 113 (1952).

    Google Scholar 

  35. M. Kumar, A. Kumar, and A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of W-Doped nanocrystalline tin oxide thin films. ACS Appl. Mater. Interfaces 7, 3571 (2015).

    CAS  PubMed  Google Scholar 

  36. C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, and Y. Wang, A review on WO3 based gas sensors: morphology control and enhanced sensing properties. J. Alloys Compd. 820, 153194 (2020).

    CAS  Google Scholar 

  37. X. Han, X. Han, L. Li, and C. Wang, Controlling the morphologies of WO3 particles and tuning the gas sensing properties. New J. Chem. 36, 2205 (2012).

    CAS  Google Scholar 

  38. R. Rong and L. Wang, Synthesis of hierarchical hollow nest-like WO3 micro/nanostructures with enhanced visible light-driven photocatalytic activity. J. Alloys Compd. 850, 156742 (2021).

    CAS  Google Scholar 

  39. X.Y. Wu, Z. Tang, X. Zhao, X. Luo, S.J. Pennycook, and S.L. Wang, Visible-light driven room-temperature coupling of methane to ethane by atomically dispersed Au on WO3. J. Energy Chem. 61, 195 (2021).

    CAS  Google Scholar 

  40. D.K. Li, B.Y. He, K.Q. Chen, M.Y. Pi, Y.T. Cui, and D.K. Zhang, Xylene gas sensing performance of Au nanoparticles loaded WO3 nanoflowers. Acta Phys. Sinica 68, 198101 (2019).

    Google Scholar 

  41. M.M. Ali and K.N.Y. Sandhya, One-step solvothermal synthesis of carbon doped TiO2–MoS2 heterostructure composites with improved visible light catalytic activity. New J. Chem. 40, 8123 (2016).

    CAS  Google Scholar 

  42. J. Ding, Y. Chai, Q. Liu, X. Liu, J. Ren, and W.L. Dai, Selective deposition of silver nanoparticles onto WO3 nanorods with different facets: the correlation of facet-induced electron transport preference and photocatalytic activity. J. Phys. Chem. C 120, 4345 (2016).

    CAS  Google Scholar 

  43. H. Ali, A. Guler, M. Masar, P. Urbanek, M. Urbanek, D. Skoda, P. Suly, M. Machovsky, D. Galusek, and I. Kuritka, Solid-state synthesis of direct Z-scheme Cu2O/WO3 nanocomposites with enhanced visible-light photocatalytic performance. Catalysts 11, 293 (2021).

    CAS  Google Scholar 

  44. P. Gholami, A. Khataee, A. Bhatnagar, and B. Vahid, Synthesis of N-doped magnetic WO3x@mesoporous carbon using a diatom template and plasma modification: visible-light-driven photocatalytic activities. ACS Appl. Mater. Interfaces 13, 13072 (2021).

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (23KJD430007), QingLan Project of Jiangsu Province, National Natural Science Foundation of China (61804069), China Postdoctoral Science Foundation (2021M702416), and Doctoral Start-up Fund Research supported by Jinling Institute of Technology (jit-b-202026). The authors thank TopEdit (www.topeditsci.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1402 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Jiang, K., Wang, W. et al. Simple Synthesis of Au-WO3 Nanoparticles with Enhanced Photocatalytic Performance. J. Electron. Mater. 53, 4250–4260 (2024). https://doi.org/10.1007/s11664-024-11154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11154-1

Keywords

Navigation