Skip to main content
Log in

Modification of the Electrical Properties of a Bi0.8Ca0.2FeO3/LaNiO3/LaAlO3 Heterostructure: Effect of 80 MeV O+7 Ion Irradiation

  • 28th International Conference on Nuclear Tracks and Radiation Measurements
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ca-doped BiFeO3/LaNiO3/LaAlO3 (BCFO/LNO/LAO) heterostructures have garnered significant interest due to their unique combination of ferroelectric, magnetic, and resistive switching properties due to interfaces and lattice mismatch/strain, leading to unique electronic properties. The roles of structural defects and oxygen vacancies are important in achieving the magnetic and electrical properties of BiFeO3-based heterostructures. By generating defects, swift heavy ion irradiation can lead to changes in the structural, optical, electrical, and magnetic properties of the materials. The Ca-doped BiFeO3 and LaNiO3 heterostructure was grown upon LAO substrates using the pulsed laser deposition technique, ensuring high-quality interfaces and controlled thicknesses. The heterostructures were irradiated with 80 MeV O+7 ions at various ion fluence levels (5 × 1010 ions/cm2 to 5 × 1012 ions/cm2). The structure and crystalline orientation of the thin films were confirmed through x-ray diffraction, while the surface morphology was measured using atomic force microscopy. Irradiation-induced modifications of the structural strain and surface morphology were investigated in the context of internal annealing effect and defect formation. The resistive switching (RS) properties of the proposed devices were assessed by I–V measurement with sweeping 0 → 5 V → 0 →  − 5 V → 0, which shows that irradiation-induced defects play an important role in the electrical properties of the proposed heterostructure. Bipolar RS behavior was also verified with the conduction mechanism, indicating that the ohmic and space-charge-limited conduction mechanism plays an important role in irradiated BCFO/LNO/LAO heterostructures.

Graphical Abstract

Graphical representation of the defect formation and RS behavior due to varying ion fluence as a function of RMS roughness and strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Akinaga, Recent advances and future prospects in functional-oxide nanoelectronics: the emerging materials and novel functionalities that are accelerating semiconductor device research and development. Jpn. J. Appl. Phys. 52(10R), 100001 (2013).

    Article  Google Scholar 

  2. L. Yin and W. Mi, Progress in BiFeO3-based heterostructures: materials, properties and applications. Nanoscale 12(2), 477–523 (2020). https://doi.org/10.1039/c9nr08800h.

    Article  CAS  PubMed  Google Scholar 

  3. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Interface physics in complex oxide heterostructures. Ann. Rev. Condens. Matter Phys. 2(1), 141–165 (2011). https://doi.org/10.1146/annurev-conmatphys-062910-140445.

    Article  CAS  Google Scholar 

  4. G. Catalan and J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009). https://doi.org/10.1002/adma.200802849.

    Article  CAS  Google Scholar 

  5. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, and R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5(10), 823–829 (2006). https://doi.org/10.1038/nmat1731.

    Article  CAS  PubMed  Google Scholar 

  6. D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, and A. Gukasov, Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008). https://doi.org/10.1103/PhysRevLett.100.227602.

    Article  CAS  PubMed  Google Scholar 

  7. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003). https://doi.org/10.1002/chin.200324015.

    Article  CAS  PubMed  Google Scholar 

  8. P.P. Biswas, Ch. Thirmal, S. Pal, and P. Murugavel, Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films. J. Appl. Phys. 123(2), 024101 (2018). https://doi.org/10.1063/1.5006311.

    Article  CAS  Google Scholar 

  9. M. Bibes and A. Barthélémy, Towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008). https://doi.org/10.1038/nmat2189.

    Article  CAS  PubMed  Google Scholar 

  10. J. Wu, Z. Fan, D. Xiao, J. Zhu, and J. Wang, Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 84, 335–402 (2016). https://doi.org/10.1016/j.pmatsci.2016.09.001.

    Article  CAS  Google Scholar 

  11. J. Silva, A. Reyes, H. Esparza, H. Camacho, and L. Fuentes, BiFeO3: a review on synthesis, doping and crystal structure. Integr. Ferroelectr. 126(1), 47–59 (2011). https://doi.org/10.1080/10584587.2011.574986.

    Article  CAS  Google Scholar 

  12. R. Safi and H. Shokrollahi, Physics, chemistry and synthesis methods of nanostructured bismuth ferrite (BiFeO3) as a ferroelectric-magnetic material. Progr. Solid State Chem. 40(1–2), 6–15 (2012).

    Article  CAS  Google Scholar 

  13. F. Fan, M. Duan, B. Luo, and C. Chen, Ferroelectric, magnetoelectric and photoelectric properties of BiFeO3 /LaNiO3 heterostructure. Chin. J. Phys. 56(5), 1903–1908 (2018). https://doi.org/10.1016/j.cjph.2018.08.002.

    Article  CAS  Google Scholar 

  14. V. Pyragas, V. Lisauskas, K. Šliužienė, and B. Vengalis, Electrical properties of nonstoichiometric In2O3-xthin films. Lith. J. Phys. 51(1), 47–51 (2011). https://doi.org/10.3952/lithjphys.51109.

    Article  CAS  Google Scholar 

  15. K.P. Rajeev, G.V. Shivashankar, and A.K. Raychaudhuri, Low-temperature electronic properties of a normal conducting perovskite oxide (LaNiO3). Solid State Commun. 79(7), 591–595 (1991). https://doi.org/10.1016/0038-1098(91)90915-i.

    Article  CAS  Google Scholar 

  16. N.C. Pandya, A.K. Debnath, and U.S. Joshi, Resistance switching and memory effects in solution-processed BiFeO3/LaNiO3 junctions. J. Phys. D Appl. Phys. 49(5), 055301 (2015). https://doi.org/10.1088/0022-3727/49/5/055301.

    Article  CAS  Google Scholar 

  17. S. Hussain, S.K. Hasanain, G. Hassnain Jaffari, and S. Ismat Shah, Thickness dependent magnetic and ferroelectric properties of LaNiO3 buffered BiFeO3 thin films. Curr. Appl. Phys. 15(3), 194–200 (2015).

    Article  Google Scholar 

  18. Z. Zhang, P. Wu, L. Chen, and J. Wang, First-principles prediction of a two dimensional electron gas at the BiFeO3/SrTiO3 interface. Appl. Phys. Lett. 99(6), 062902 (2011). https://doi.org/10.1063/1.3624457.

    Article  CAS  Google Scholar 

  19. G. Chen, J. Chen, W. Pei, Y. Lu, Q. Zhang, Q. Zhang, and Y. He, Bismuth ferrite materials for solar cells: current status and prospects. Mater. Res. Bull. 110, 39–49 (2019). https://doi.org/10.1016/j.materresbull.2018.10.011.

    Article  CAS  Google Scholar 

  20. S. Jethva, S. Katba, M. Bhatnagar, M. Ranjan, D. Shukla, and D.G. Kuberkar, Effect of strain on the modifications in electronic structure and resistive switching in Ca-doped BiFeO3 films. J. Appl. Phys. 125(8), 082510 (2019). https://doi.org/10.1063/1.5045844.

    Article  CAS  Google Scholar 

  21. Y.-T. Liu, S.-J. Chiu, H.-Y. Lee, and S.-Y. Chen, Preparation of a BiFeO3/LaNiO3 multiferroic oxide superlattice structure by RF magnetron sputtering. Surf. Coat. Technol. 206(7), 1666–1672 (2011). https://doi.org/10.1016/j.surfcoat.2011.08.030.

    Article  CAS  Google Scholar 

  22. A.B. Ravalia, M.V. Vagadia, P.G. Trivedi, P.S. Solanki, P.S. Vachhani, R.J. Choudhary, D.M. Phase, K. Asokan, N.A. Shah, and D.G. Kuberkar, Modifications in device characteristics of La06Pr02Sr02MnO3/SrNb0002Ti0998O3 manganites by swift heavy ion irradiation. Indian J. Phys. 89(2), 137–142 (2014).

    Article  Google Scholar 

  23. M. Bianconi, N. Argiolas, M. Bazzan, G.G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate. Appl. Phys. Lett. 87(7), 072901 (2005). https://doi.org/10.1063/1.2007855.

    Article  CAS  Google Scholar 

  24. J.H. Markna, R.N. Parmar, D.G. Kuberkar, R. Kumar, D.S. Rana, and S.K. Malik, Thickness dependent swift heavy ion irradiation effects on electronic transport of (La0.5Pr0.2)Ba0.3MnO3 thin films. Appl. Phys. Lett. 88(15), 152503 (2006). https://doi.org/10.1063/1.2192087.

    Article  CAS  Google Scholar 

  25. D. Avasthi, Role of swift heavy ions in materials characterization and modification. Vacuum 48(12), 1011–1015 (1997). https://doi.org/10.1016/s0042-207x(97)00114-0.

    Article  CAS  Google Scholar 

  26. S.B. Ogale, Y.H. Li, M. Rajeswari, L.S. Riba, R. Ramesh, T. Venkatesan, A.J. Millis, R. Kumar, G.K. Mehta, R. Bathe, and S.I. Patil, Columnar defect induced phase transformation in epitaxial La0.7Ca0.3MnO3 films. J. Appl. Phys. 87(9), 4210–4215 (2000).

    Article  CAS  Google Scholar 

  27. Ch. Houpert, F. Studer, D. Groult, and M. Toulemonde, Transition from localized defects to continuous latent tracks in magnetic insulators irradiated by high energy heavy ions: A HREM investigation. Nucl. Instrum. Methods Phys. Res., Sect. B 39(1–4), 720–723 (1989). https://doi.org/10.1016/0168-583x(89)90882-3.

    Article  Google Scholar 

  28. H. Yamamura and R. Kiriyama, (1972) The relations between oxygen vacancies and structures in the solid solution systems Sr1-xMxFeO3-δ (M=Y, La, Bi and ln), 2, 343–349 https://doi.org/10.1246/nikkashi.1972.343

  29. W. Jo, D.C. Kim, and J.W. Hong, Reverse-poling effects on charge retention in Pb(Zr, Ti)O3(001)/LaNiO3(001) heterostructures. Appl. Phys. Lett. 76(3), 390–392 (2000). https://doi.org/10.1063/1.125763.

    Article  CAS  Google Scholar 

  30. M. Detalle and D. Rémiens, Chemical and physical characterization of LaNiO3 thin films deposited by sputtering for top and bottom electrodes in ferroelectric structure. J. Cryst. Growth 310(15), 3596–3603 (2008). https://doi.org/10.1016/j.jcrysgro.2008.04.053.

    Article  CAS  Google Scholar 

  31. J. Wu and J. Wang, Ferroelectric and impedance behavior of La- and Ti-Co doped BiFeO3 thin films. J. Am. Ceram. Soc. 93(9), 2795–2803 (2010). https://doi.org/10.1111/j.1551-2916.2010.03816.x.

    Article  CAS  Google Scholar 

  32. J.F. Ziegler, J. P. Biersack, and M. D. Ziegler, see http://www.srim.org.for Program SRIM, 2008

  33. A. Ravalia, M. Vagadia, P.S. Solanki, K. Asokan, and D.G. Kuberkar, Role of strain and nanoscale defects in modifying the multiferroicity in nanostructured BiFeO3 films. J. Exp. Nanosci. 10(14), 1057–1067 (2014). https://doi.org/10.1080/17458080.2014.953608.

    Article  CAS  Google Scholar 

  34. D.K. Shukla, S. Ravi Kumar, R.J. Mollah, P. Choudhary, S.K. Thakur, N.B. Sharma, and M.K. Brookes, Swift heavy ion irradiation induced magnetism in magnetically frustrated BiMn2O5 thin films. Phys. Rev. B 82(17), 174432 (2010). https://doi.org/10.1103/physrevb.82.174432.

    Article  Google Scholar 

  35. A. Ravalia, M. Vagadia, P.S. Solanki, S. Gautam, K.H. Chae, K. Asokan, N.A. Shah, and D.G. Kuberkar, Role of defects in BiFeO3 multiferroic films and their local electronic structure by x-ray absorption spectroscopy. J. Appl. Phys. 116(15), 153701 (2014). https://doi.org/10.1063/1.4898196.

    Article  CAS  Google Scholar 

  36. Z.-X. Lu, X. Song, L.-N. Zhao, Z.-W. Li, Y.-B. Lin, M. Zeng, Z. Zhang, X.-B. Lu, S.-J. Wu, X.-S. Gao, Z.-B. Yan, and J.-M. Liu, Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFeO3 thin films. Chin. Phys. B 24(10), 107705 (2015). https://doi.org/10.1088/1674-1056/24/10/107705.

    Article  CAS  Google Scholar 

  37. Y. Watanabe and M. Okano, Photoresponse of Zener tunneling junctions of Pb(Ti, Zr)O3/SrTiO3 at low temperature. J. Appl. Phys. 94(11), 7187–7192 (2003). https://doi.org/10.1063/1.1625085.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Mukul Gupta, UGC-DAE, CSR, Indore, for XRD measurement and Dr. D. S. Rana, IISER, Bhopal, for the PLD facility. The authors also acknowledge Dr. C. Balasubramanian, FCIPT, IPR, Gandhinagar, for providing the AFM facility. ABR is thankful to IUAC New Delhi for UFR-65319 and UFR-72317, and UGC-DAE, CSR, Indore, for CSR-IC-ISUM-64/CRS-347/2020-21/949 and project funding. S.H. acknowledges the DST-INSPIRE for Fellowship (DST/INSPIRE/03/2023/000106). J. S. acknowledges the DST-INSPIRE for Fellowship (DST/INSPIRE/03/2018/000699).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Ravalia.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajra, S., Josely Jose, P., Rathod, U.I. et al. Modification of the Electrical Properties of a Bi0.8Ca0.2FeO3/LaNiO3/LaAlO3 Heterostructure: Effect of 80 MeV O+7 Ion Irradiation. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11139-0

Keywords

Navigation