Skip to main content
Log in

The Effect of Sintering Temperature on the Microstructure and Electrical Properties of ZnO–Bi2O3 Varistor Ceramics

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of sintering temperature on the microstructure and electrical properties of ZnO–Bi2O3 varistor ceramics was studied in the present work. Results demonstrate that the Bi-rich phase ZnBi38O60 is generated at the ZnO grain boundaries in the prepared varistor ceramics over a range of 850–1000°C. As the sintering temperature increases, the Bi-rich insulator layer tends to widen, and the average grain size increases to 13.22 μm. The switching field, breakdown strength (\(E_{{1{\text{mA}}}}\)), and nonlinear coefficient (α) increase, while the leakage current density (\(J_{L}\)) decreases, because of an increase in barrier height (\(\varphi_{B}\)). In addition, the sintering temperature promotes a decrease in the dielectric constant (\(\varepsilon_{a}\)) and an increase in dielectric loss. The ZnO–Bi2O3 varistor ceramic sintered at 1000°C exhibits excellent overall electrical properties, with a switching field of 228.04 V/mm, \(E_{{1{\text{mA}}}}\) of 379.76 V/mm, α of 6.02, \(J_{L}\) of 140 μA/cm2, \(\varphi_{B}\) of 0.39 eV, and \(\varepsilon_{a}\) of 172.87 at 1 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.K. Gupta, Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817 (2010).

    Article  Google Scholar 

  2. L.M. Levinson and H.R. Philipp, The physics of metal oxide varistors. J. Appl. Phys. 46, 1332 (1975).

    Article  CAS  Google Scholar 

  3. M.P. Ahmad, A.V. Rao, K.S. Babu, and G.N. Rao, Effect of carbon-doping on structural and dielectric properties of zinc oxide. J. Adv. Dielectr. 10, 2050017 (2020).

    Article  CAS  Google Scholar 

  4. H. Jiang, X. Ren, X. Lao, A. Kong, M. Zhong, Y. Sun, Y. Wu, Z. Yao, and L. Shi, Effect of NiO doping on grain growth and electrical properties of ZnO-based varistors. J. Eur. Ceram. Soc. 42, 3898 (2022).

    Article  CAS  Google Scholar 

  5. M.A. Badruddin, M.S. Shaifudin, A.M.I.A.A. Mohd, W.M.I.W.M. Kamaruzzaman, N.A.M. Nasir, N. Yusof, and M.S.M. Ghazali, Electrical and microstructural evaluation of ZnO varistor ceramics with different CaSiO3 contents. Mater. Chem. Phys. 289, 126464 (2022).

    Article  CAS  Google Scholar 

  6. A. Vojta and D.R. Clarke, Microstructural origin of current localization and “puncture” failure in varistor ceramics. J. Appl. Phys. 81, 985 (1997).

    Article  CAS  Google Scholar 

  7. E.R. Leite, M.A.L. Nobre, and E. Longo, Microstructural development of ZnO varistor during reactive liquid phase sintering. J. Mater. Sci. 31, 5391 (1996).

    Article  CAS  Google Scholar 

  8. A. Bouchekhlal and F. Hobar, Effect of sintering temperature on microstructure and nonlinear electrical characteristics of ZnO varistor. J. Adv. Dielectr. 8, 1850014 (2018).

    Article  CAS  Google Scholar 

  9. J. Li, K. Tang, S. Yang, and D. Zhu, Effects of Sb2O3 on the microstructure and electrical properties of ZnO–Bi2O3-based varistor ceramics fabricated by two-step solid-state reaction route. Ceram. Int. 47, 19394 (2021).

    Article  CAS  Google Scholar 

  10. X. Huang, G. Pan, J. Li, D. Zhu, and Q. Yan, Effects of SiO2 on the microstructure and electrical properties of ZnO-based varistors (ZBSCCM) prepared by two-step sinering routework. Ceram. Int. 49, 37263 (2023).

    Article  CAS  Google Scholar 

  11. A.M.D. Rubia, J.F. Fernandez, and A.C. Caballero, Equilibrium phases in the Bi2O3-rich region of the ZnO–Bi2O3 system. J. Eur. Ceram. Soc. 25, 2215 (2005).

    Article  Google Scholar 

  12. C.W. Nahm, Effect of Bi2O3 doping on microstructure and electrical properties of ZnO-V2O5-Mn3O4 semiconducting ceramics. J. Mater. Sci. Mater. Electron. 28, 903 (2017).

    Article  CAS  Google Scholar 

  13. T. Tian, L. Zheng, M. Podlogar, H. Zeng, S. Bernik, K. Xu, X. Ruan, X. Shi, and G. Li, Novel ultrahigh-performance ZnO-based varistor ceramics. ACS Appl. Mater. Interfaces 13, 35924 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. Meng, J. Hu, H. Zhao, and J. He, High voltage gradient and low residual-voltage ZnO varistor ceramics tailored by doping with In2O3 and Al2O3. Ceram. Int. 42, 19446 (2016).

    Article  Google Scholar 

  15. X. Wang, X. Ren, Z. Li, W. You, H. Jiang, W. Yu, L. Jin, Z. Yao, and L. Shi, A unique tuning effect of Mg on grain boundaries and grains of ZnO varistor ceramics. J. Eur. Ceram. Soc. 41, 2633 (2021).

    Article  CAS  Google Scholar 

  16. F. Kharchouche, Effect of sintering temperature on microstructure and electrical properties of ZnO-0.5mol.%V2O5–0.5mol.%Cr2O3 varistor. J. Mater. Sci. Mater. Electron. 29, 3891 (2018).

    Article  CAS  Google Scholar 

  17. M. Zhao, W. Cui, Z. Liu, and H. Chen, Effect of Bi2O3 on the ZnVMnCoTiO based varistor ceramic sintered at 800 °C. J. Mater. Sci. Mater. Electron. 32, 19724 (2021).

    Article  CAS  Google Scholar 

  18. J. Li, K. Tang, S. Yang, and D. Zhu, Effects of doping Y2O3 on the microstructure and electrical properties of ZnO–Bi2O3-based varistor ceramics. J. Electroceram. 46, 131 (2021).

    Article  CAS  Google Scholar 

  19. M. Zhao, H. Song, W. Cui, Z. Liu, and H. Chen, Low temperature sintering and characterization of 0.25–1 mol.% Bi2O3 doped ZnBiMnNbO based varistor ceramics. Ceram. Int. 47(16), 23362 (2021).

    Article  CAS  Google Scholar 

  20. X. Xiao, L. Zheng, L. Cheng, T. Tian, X. Ruan, and G. Li, Effect of Cr2O3 on the property and microstructure of ZnO–Bi2O3 varistor ceramics in different sintering temperature. Ceram. Int. 41, S557 (2015).

    Article  CAS  Google Scholar 

  21. D. Szwagierczak, J. Kulawik, and A. Skwarek, Influence of processing on microstructure and electrical characteristics of multilayer varistors. J. Adv. Ceram. 8, 408 (2019).

    Article  CAS  Google Scholar 

  22. M.A. de la Rubia, M. Peiteado, J.F. Fernandez, and A.C. Caballero, Compact shape as a relevant parameter for sintering ZnO–Bi2O3 based varistors. J. Eur. Ceram. Soc. 87, 1209 (2004).

    Article  Google Scholar 

  23. R. Metz, H. Delalu, J.R. Vignalou, N. Achard, and M. Elkhatib, Electrical properties of varistors in relation to their true bismuth composition after sintering. Mater. Chem. Phys. 63, 157 (2000).

    Article  CAS  Google Scholar 

  24. L.M. Levinson and H.R. Philipp, Metal oxide varistor-A multijunction thin-film device. Appl. Phys. Lett. 24, 75 (1974).

    Article  CAS  Google Scholar 

  25. J. Shen, Y. Zhang, M. Li, R. Bao, M. Shen, C. Huang, G. Zhang, Y. Ke, H. Li, and S. Jiang, Effects of Fe and Al co-doping on the leakage current density and clamp voltage ratio of ZnO varistor. J. Alloy. Compd. 747, 1018 (2018).

    Article  CAS  Google Scholar 

  26. W. Cao, Y. Guo, J. Su, and J. Liu, Effect of sintering temperature on the microstructural evolution of ZnO varistors. J. Electron. Mater. 52, 1266 (2023).

    Article  CAS  Google Scholar 

  27. H.I. Hsiang, C.C. Chen, and C.C. Kao, Effect of ZnBi2O4 and Bi2O3 addition on the densification, microstructure, and varistor properties of ZnO varistors. Ceram. Int. 49, 2244 (2023).

    Article  CAS  Google Scholar 

  28. T.K. Gupta and W.G. Carlson, A grain-boundary defect model for instability/stability of a ZnO varistor. J. Mater. Sci. 20, 3487 (1985).

    Article  CAS  Google Scholar 

  29. F.A. Selim, T.K. Gupta, P.L. Hower, and W.G. Carlson, Low voltage ZnO varistor: Device process and defect model. J. Appl. Phys. 51, 765 (1980).

    Article  CAS  Google Scholar 

  30. T. Tian, L. Zheng, S. Bernik, Z. Man, X. Shi, X. Ruan, and G. Li, Influence of Cr2O3 doping on the electrical characteristics of novel ZnO-Cr2O3-based varistor ceramics. Mater. Res. Bull. 159, 112111 (2023).

    Article  CAS  Google Scholar 

  31. W. Liang, H. Zhao, S. Fan, H. Wang, Q. Xie, and Y. Zhu, Improvement of voltage gradient and leakage current characteristics of Mn2O3 and In2O3 added SnO2-ZnO-Ta2O5 based varistor. Mater. Sci. Semicond. Process. 124, 105582 (2021).

    Article  CAS  Google Scholar 

  32. J. Li, K. Tang, and D. Zhu, Effect of Ho2O3 doping on the microstructure and electrical properties of ZnO–Bi2O3-Sb2O3-Cr2O3-Co2O3-MnO2-based varistors. Mater. Sci. Semicond. Process. 153, 107180 (2023).

    Article  CAS  Google Scholar 

  33. H. Wang, H. Zhao, W. Liang, S. Fan, and J. Kang, Effect of sintering process on the electrical properties and microstructure of Ca-doped ZnO varistor ceramics. Mater. Sci. Semicond. Process. 133, 105880 (2021).

    Article  CAS  Google Scholar 

  34. A.X. Zhao, J. Liang, J. Sun, J. Guo, S. Dursun, K. Wang, and C.A. Randall, Cold sintering ZnO based varistor ceramics with controlled grain growth to realize superior breakdown electric field. J. Eur. Ceram. Soc. 41, 430 (2021).

    Article  CAS  Google Scholar 

  35. M. Zhao, Y. Wang, T. Sun, and H. Song, Effect of bismuth and vanadium as the varistor forming element in ZnO-based ceramics. J. Mater. Sci. Mater. Electron. 31, 8206 (2020).

    Article  CAS  Google Scholar 

  36. M. Zhao, X. Lin, W. Cui, Z. Liu, H. Chen, L. Deng, and Y. Du, Effect of Nb2O5 on ZnBiMnO varistor ceramic prepared by solid-state sintering at 850 ℃. Ceram. Int. 49, 67 (2023).

    Article  CAS  Google Scholar 

  37. S. Ma, Z. Xu, R. Chu, J. Hao, J. Hao, W. Li, L. Cheng, and G. Li, Influence of SnO2 on ZnO–Bi2O3-Co2O3 based varistor ceramics. Ceram. Int. 41, 12490 (2015).

    Article  CAS  Google Scholar 

  38. H. Bai, M. Li, Z. Xu, R. Chu, J. Hao, H. Li, C. Chen, and G. Li, Influence of SiO2 on electrical properties of the highly nonlinear ZnO–Bi2O3-MnO2 varistors. J. Eur. Ceram. Soc. 37, 3965 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Doctoral Fund Project of Henan Polytechnic University (Grant No. B2020-45 and Grant No. B2019-20), the Fundamental Research Funds for the Universities of Henan Province (Grant No. NSFRF210451), the Young Core Instructor Foundation of Henan Polytechnic University (Grant No. 2022XQG-12 and 2023XQG-10), and the Henan Province Scientific and Technological Project (Grant No. 222102230026).

Funding

The Funding was provided by Doctoral Fund Project of Henan Polytechnic University (B2020-45, Jingjing Tian; B2019-20, Heng Tian), the Fundamental Research Funds for the Universities of Henan Province (NSFRF210451, Jingjing Tian), the Young Core Instructor Foundation of Henan Polytechnic University (2022XQG-12, Jingjing Tian; 2023XQG-10, Heng Tian), and the Henan Province Scientific and Technological Project (222102230026, Jingjing Tian).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Wu, Y., Tian, H. et al. The Effect of Sintering Temperature on the Microstructure and Electrical Properties of ZnO–Bi2O3 Varistor Ceramics. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11135-4

Keywords

Navigation