Skip to main content
Log in

Optimizing High-Transmission Conductive Windows with Antireflection Coating for Oblique Angle Light Incidence

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study focuses on the fabrication and characterization of a transparent conductive window with high transmission properties. The window is created by depositing optimized antireflection layers on quartz glass to emphasize the spectral range of 450–800 nm at an incidence angle of 35°. The deposition process involves an antireflection layer to minimize reflection and achieve a transmission level above 91% within the specified spectral range. The thin film demonstrates the excellent optical properties of the fabricated transparent conductive window, making it suitable for a wide range of applications requiring high transmission and resistance to laser-induced damage. This research provides insights into the fabrication and performance of transparent conductive windows, laying the groundwork for potential applications in optics and industrial settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. E. Acosta, Thin Films/Properties and Applications (London: Intech Open, 2021), pp.1–19.

    Google Scholar 

  2. F. Catania, H. de Souza Oliveira, P. Lugoda, G. Cantarella, and N. Münzenrieder, Thin-film electronics on active substrates: review of materials, technologies and applications. J. Phys. D Appl. Phys. 55, 323002 (2022).

    Article  CAS  Google Scholar 

  3. R. Shwetharani, H.R. Chandan, M. Sakar, G.R. Balakrishna, K.R. Reddy, and A.V. Raghu, Photocatalytic semiconductor thin films for hydrogen production and environmental applications. Int. J. Hydrog. Energy 45(36), 18289 (2020).

    Article  CAS  Google Scholar 

  4. H. Kim, J.S. Horwitz, G. Kushto, A. Piqué, Z.H. Kafafi, C.M. Gilmore, and D.B. Chrisey, Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 88, 6021 (2000).

    Article  CAS  Google Scholar 

  5. W.S. Leung, Y.C. Chan, and S.M. Lui, A study of degradation of indium tin oxide thin films on glass for display applications. Microelectron. Eng. 101, 1 (2013).

    Article  CAS  Google Scholar 

  6. S.M. Shang and W. Zeng, Conductive nanofibres and nanocoatings for smart textiles, Multidisciplinary Know-How for Smart-Textiles Developers. ed. T. Kirstein (Amsterdam: Elsevier, 2013), pp. 92–128.

    Chapter  Google Scholar 

  7. J.T. Gudmundsson, A. Anders, and A.V. Keudell, Foundations of physical vapor deposition with plasma assistance. Plasma Sources Sci. Technol. 31, 083001 (2022).

    Article  CAS  Google Scholar 

  8. P. Lippens and U. Muehlfeld, Indium tin oxide (ITO): sputter deposition processes, Handbook of Visual Display Technology. ed. J. Chen, W. Cranton, and M. Fihn (Berlin, Heidelberg: Springer, 2012), pp. 779–794.

    Chapter  Google Scholar 

  9. N. Nedelcu, V. Chiroiu, L. Munteanu, I. Girip, C. Rugina, A. Lőrinczi, E. Matei, and A. Sobetkii, Design of highly transparent conductive optical coatings optimized for oblique angle light incidence. Appl. Phys. A 127, 575 (2021).

    Article  CAS  Google Scholar 

  10. N. Nedelcu, Thin Films: Processes and Characterization Techniques (New York: Springer, 2023).

    Book  Google Scholar 

  11. A.M.B. van Mol, Y. Chae, A.H. McDaniel, and M.D. Allendorf, Chemical vapor deposition of tin oxide: fundamentals and applications. Thin Solid Films 502(1–2), 72 (2006).

    Google Scholar 

  12. M.A. Butt, Thin-film coating methods: a successful marriage of high-quality and cost-effectiveness—a brief exploration. Coatings 12(8), 1115 (2022).

    Article  CAS  Google Scholar 

  13. Z. Liu, Y. Xie, J. Zhao, S. Wu, Z. Zhou, M. Wen, Y.B. Cheng, and J. Zhong, Rapid preparation of conductive transparent films via solution printing of graphene precursor. Thin Solid Films 657, 24 (2018).

    Article  CAS  Google Scholar 

  14. D. Li, W.Y. Lai, Y.Z. Zhang, and W. Huang, Printable transparent conductive films for flexible electronics. Adv. Mater. 30(10), 1704738 (2018).

    Article  Google Scholar 

  15. D.W. Kim, S.W. Kim, G. Lee, J. Yoon, S. Kim, J.H. Hong, S.C. Jo, and U. Jeong, Fabrication of practical deformable displays: advances and challenges. Light Sci. Appl. 12, 61 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Ouyang, D. Liu, K. He, and J. Kang, Recent advances in touch sensors for flexible displays. IEEE Open J. Nanotechnol. 4, 36 (2022).

    Article  Google Scholar 

  17. Y. Sung, R.E. Malay, X. Wen, C.N. Bezama, V.V. Soman, M.H. Huang, S.M. Garner, D.M. Poliks, and D. Klotzkin, Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates. Appl. Opt. 57(9), 2202 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. M.F. Al-Kuhaili, Transparent-conductive and infrared-shielding WO3/Ag/WO3 multilayer heterostructures. Sol. Energy 250(2023), 209 (2023).

    Article  CAS  Google Scholar 

  19. D. Zhang, I.A. Digdaya, R. Santbergen, R.A.C.M.M. van Swaaij, P. Bronsveld, M. Zeman, J.A.M. van Roosmalen, and A.W. Weeber, Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells. Solar Energy Mater. Solar Cells 117, 132 (2013).

    Article  CAS  Google Scholar 

  20. Y. Zhong, Y.C. Shin, C.M. Kim, B.G. Lee, E.H. Kim, Y.J. Park, K.M.A. Sobahan, C.K. Hwangbo, Y.P. Lee, and T.G. Kim, Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition. J. Mater. Res. 23, 2500 (2008).

    Article  CAS  Google Scholar 

  21. M.K. Basher, S.M. Shah Riyadh, M.K. Hossain, H. Mahmudul, Md.A.R. Akand, S.M. Amir-Al Zumahi, MdAb. Matin, N. Das, and M. Nur-E-Alam, Development of zinc-oxide nanorods on chemically etched zinc plates suitable for high-efficiency photovoltaics solar cells. Opt. Quant. Electron. 55, 322 (2023).

    Article  CAS  Google Scholar 

  22. J. Liu, C. Wang, Z. Dang, Y. Chu, and Z. Zhang, Thermally, resettable laser transmission induced transparency in polymer waveguides at 635 nm. Opt. Express 30(10), 17529 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Ren, P. Liu, R. Liu, Y. Wang, Y. Wei, L. Jind, and G. Zhao, The key of ITO films with high transparency and conductivity: grain size and surface chemical composition. J. Alloy. Compd. 893, 162304 (2022).

    Article  CAS  Google Scholar 

  24. J. Zou, C. Dong, H. Wang, T. Du, and Z. Luo, Towards visible-wavelength passively mode-locked lasers in all-fibre format. Light Sci. Appl. 9, 61 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. Krüger and W. Kautek, Femtosecond pulse visible laser processing of fibre composite materials. Appl. Surf. Sci. 106, 383 (1996).

    Article  Google Scholar 

  26. E.W. Van Stryland, M.J. Soileau, A.L. Smirl, and W.E. Williams, Pulse-width and focal-volume dependence of laser-induced breakdown. Phys. Rev. B 23, 2144 (1981).

    Article  Google Scholar 

  27. International Standard ISO 11254-1 First edition 2000-06-01 (2003).

  28. R.J. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 16, 1214–1222 (1980).

    Article  Google Scholar 

  29. J.C. Manifacier, J. Gasiot, and J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E 9, 1002–1004 (1976).

    Article  CAS  Google Scholar 

  30. J. Tauc, Amorphous and Liquid Semiconductors (London: Plenum Press, 1974).

    Book  Google Scholar 

  31. S.H. Wemple and M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971).

    Article  Google Scholar 

  32. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767 (1973).

    Article  CAS  Google Scholar 

  33. N. Nedelcu, V. Chiroiu, L. Munteanu, and I. Girip, Characterization of GeSbSe thin films synthesized by the conventional melt-quenching method. IR Spectrosc. Today’s Spectrosc. 35(S3), 22 (2020).

    Google Scholar 

  34. K. Tanaka, Structural phase transitions in chalcogenide glasses. Phys. Rev. B 39(2), 1270 (1989).

    Article  CAS  Google Scholar 

  35. N. Stan, N. Nedelcu, V. Chiroiu, L. Munteanu, and M. Ionescu, Optical and Morphological investigation of chalcogenide Ge-Sb-Te thin films. Proc. Roman. Acad. A 23, 245 (2022).

    Google Scholar 

  36. N.F. Mott and E.A. Davis, Electronic processes in non-crystalline materials. Phys. Today 25(12), 55 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoleta Nedelcu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedelcu, N., Webb, D., Ackroyd, N. et al. Optimizing High-Transmission Conductive Windows with Antireflection Coating for Oblique Angle Light Incidence. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11133-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11133-6

Keywords

Navigation