Skip to main content
Log in

Electrochromic Durability and Color Variation of Thickness-Controlled Nanosheet-Structured Nickel–Cobalt Oxide Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Owing to their electrochromic performance, hierarchically structured transition-metal oxides have promising energy-saving device applications. In this study, nanosheet-structured nickel-cobalt (Ni-Co) oxide thin films were prepared via facile processes under simple solution conditions and were used as energy-saving electrochromic materials. As the growth time increased from 1.5 h to 8 h, the film thickness increased from ~ 0.7 μm to ~ 1.3 μm, and the porous nanosheet-like structures were more uniformly distributed throughout the thin film. At the 1000th cyclic voltammetry (CV) cycle (scan rate = 50 m/V), the in situ transmittance variation (\(\Delta T\)) and optical density (\(\Delta {\text{OD}}\)) of an Ni-Co oxide thin film grown for 8 h were ~ 49% and ~ 0.71 at a wavelength of 700 nm, respectively, which were better than those of samples grown for 1.5 h (\(\Delta T\) of ~ 26%, \(\Delta {\text{OD}}\) of ~ 0.19) and 3 h (\(\Delta T\) of ~ 46%, \(\Delta {\text{OD}}\) of ~ 0.61). However, the Ni-Co oxide thin-film samples grown for 1.5 h and 3 h had good electrochromic durability over 1000 cycles, with reversibility of 0.99. These Ni-Co oxide thin films exhibited tunable color modulation in the bleached and colored states, along with fast switching time (< 4 s) and excellent coloration memory effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6

Similar content being viewed by others

References

  1. J. Guo, Y. Liang, S. Zhang, D. Ma, T. Yang, W. Zhang, H. Li, S. Cao, and B. Zou, Recent progress in improving strategies of metal oxide-based electrochromic smart window. Green Energy Resour. 1, 100007 (2023).

    Article  Google Scholar 

  2. T. Rao, Y. Zhou, J. Jiang, P. Yang, and W. Liao, Low dimensional transition metal oxide towards advanced electrochromic devices. Nano Energy 100, 107479 (2022).

    Article  CAS  Google Scholar 

  3. C. Zhang, C. Zheng, S. Zhou, Y. Shen, and C. Zuo, Enhanced electrochromic porous cobalt oxides nanowall electrodes: a new way for fast modulation of yellow-brown light. Mater. Res. Bull. 89, 204 (2017).

    Article  CAS  Google Scholar 

  4. C. Ravi Dhas, R. Venkatesh, R. Sivakumar, A. Moses Ezhil Raj, and C. Sanjeeviraja, Fast electrochromic response of porous-structured cobalt oxide (Co3O4) thin films by novel nebulizer spray pyrolysis technique. Ionics 22, 1911 (2016).

    Article  Google Scholar 

  5. Y. Huang, B. Wang, P. Lyu, S. Zhao, X. Wu, S. Zhang, R. Li, Q. Jiang, F. Wang, Y. Zhao, and R. Zhang, Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows. Nano Res. 16, 12165 (2023).

    Article  CAS  Google Scholar 

  6. K.H. Kim, S. Fujii, and Y. Abe, Incorporation of Co2+, Cu2+, and Zn2+ ions into nickel oxide thin films and their enhanced electrochemical and electrochromic performances. Int. J. Electrochem. Sci. 17, 220125 (2022).

    Article  CAS  Google Scholar 

  7. K. Zhou, Z. Qi, B. Zhao, S. Lu, H. Wang, J. Liu, and H. Yan, The influence of crystallinity on the electrochromic properties and durability of NiO thin films. Surf. Interfaces 6, 91 (2017).

    Article  CAS  Google Scholar 

  8. X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, and H. Huang, Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochim. Acta 53, 5721 (2008).

    Article  CAS  Google Scholar 

  9. W.C. Lee, E.C. Choi, J.-H. Boo, and B. Hong, A study on characterization of nano-porous NiO thin film to improve electrical and optical properties for application to automotive glass. Thin Solid Films 641, 28 (2017).

    Article  CAS  Google Scholar 

  10. S. Pereira, A. Gonçalves, N. Correia, J. Pinto, L. Pereira, R. Martins, and E. Fortunato, Electrochromic behavior of NiO thin films deposited by e-bam evaporation at room temperature. Sol. Energy Mater. Sol. Cells 120, 109 (2014).

    Article  CAS  Google Scholar 

  11. J.Z. Ou, S. Balendhran, M.R. Field, D.G. McCulloch, A.S. Zoolfakar, R.A. Rani, S. Zhuiykov, A.P. O’Mullane, and K. Kalantar-zadeh, The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 4, 5980 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. B.W.-C. Au, K.-Y. Chan, and D. Knipp, Effect of film thickness on electrochromic performance of sol-gel deposited tungsten oxide (WO3). Opt. Mater. 94, 387 (2019).

    Article  Google Scholar 

  13. S.S. Kalagi, S. Mali, D.S. Dalavi, A.I. Inamdar, H. Im, and P.S. Patil, Transmittance attenuation and chromic contrast characterization of R.F. sputtered WO3 thin films for electrochromic device applications. Electrochim. Acta 85, 501 (2012).

    Article  CAS  Google Scholar 

  14. B. Safdar, A.K. Prasad, and K.-S. Ahn, NiCo-mixed hydroxide nanosheets as a new electrochromic material with fast optical response. Chem. Phys. Lett. 783, 139024 (2021).

    Article  CAS  Google Scholar 

  15. Y. Chen, D. Xu, K. Xu, N. Zhang, S. Liu, J. Zhao, Q. Luo, L.W. Snyman, and J.W. Swart, Optoelectronic properties analysis of silicon light-emitting diode monolithically integrated in standard CMOS IC. Chin. Phys. B 28, 107801 (2019).

    Article  CAS  Google Scholar 

  16. K.H. Kim, K. Numata, and Y. Abe, Color-tunable nanosheet-structured nickel-cobalt hydroxide and oxide thin films. J. Electron. Mater. 52, 4935 (2023).

    Article  CAS  Google Scholar 

  17. X. Huang, J. Wu, R. Guo, Y. Lin, and P. Zhang, Aligned nickel-cobalt oxide nanosheet arrays for lithium ion battery applications. Int. J. Hydrog. Energy 39, 21399 (2014).

    Article  CAS  Google Scholar 

  18. F. Hekmat, S. Shahrokhian, and H. Hosseini, Direct growth of nickel-cobalt oxide nanosheet arrays on carbon nanotubes integrated with binder-free hydrothermal carbons for fabrication of high performance asymmetric supercapacitors. Compos. B 172, 41 (2019).

    Article  CAS  Google Scholar 

  19. X. Chen, R. Xie, H. Li, F. Jaber, F. Musharavati, E. Zalnezhad, S. Bae, K.S. Hui, and K.N. Hui, Supercapacitor performance of porous nickel cobaltite nanosheets. Sci. Rep. 10, 18956 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K.H. Kim and K. Numata, Growth of vertically aligned nanosheet-like structured nickel-cobalt hydroxide thin films and their electrochemical properties. Appl. Phys. A 129, 653 (2023).

    Article  CAS  Google Scholar 

  21. K.H. Kim, Y. Ishita, and Y. Abe, Electrochromic characteristics of porous nanosheet-structured nickel oxide films with cobalt and zinc dopants. Mater. Lett. 305, 130755 (2021).

    Article  CAS  Google Scholar 

  22. K.H. Kim, M. Morohoshi, and Y. Abe, Color modulation of electrochromic nanosheet-structured nickel-cobalt oxide thin films. Appl. Phys. A 128, 507 (2022).

    Article  CAS  Google Scholar 

  23. K. Xu, Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromech. Microeng. 31, 054001 (2021).

    Article  CAS  Google Scholar 

  24. C. Faure and C. Delmas, Characterization of a turbostractic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. J. Power. Sources 35, 279 (1991).

    Article  CAS  Google Scholar 

  25. T. Zhao, H. Jiang, and J. Ma, Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. J. Power Source 196, 860 (2011).

    Article  CAS  Google Scholar 

  26. S.A. Rahimi, P. Norouzi, and M.R. Ganjali, One-step cathodic electrodeposition of a cobalt hydroxide-graphene nanocomposite and its use as a high performance supercapacitor electrode material. RSC Adv. 8, 26818 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D. Levasseur, I. Mjejri, T. Rolland, and A. Rougier, Color tuning by oxide addition in PEDOT:PSS based electrochromic devices. Polymers 11, 179 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. M.C. Gonçalves, R.F.P. Pereira, R. Alves, S.C. Nunes, M. Fernandes, H.M.R. Gonçalves, S. Pereira, M.M. Silva, E. Fortunato, R. Regom, and V.Z. Bermudez, Electrochromic device composed of a di-urethanesil electrolyte incorporating lithium triflate and 1-butyl-3-methylimidazolium. Front. Mater. 7, 139 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Science Research (c) (No.21K04149) from the Japan Society for the Promotion of Science. The authors would like to thank Susumu Tokuda of the Open Facility Center of the Kitami Institute of Technology for technical assistance with FESEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Ho Kim.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.H., Numata, K. Electrochromic Durability and Color Variation of Thickness-Controlled Nanosheet-Structured Nickel–Cobalt Oxide Thin Films. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11114-9

Keywords

Navigation