Skip to main content
Log in

Enhanced Electrical Transport Properties of Beetroot Dye-Based Thin Film in Presence of Titanium Dioxide Nanoparticles

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to reduce electronic waste, scientists are looking for alternative biodegradable, eco-friendly, non-conventional electronic materials suitable for electronic and optoelectronic applications. Here, we have studied the conductivity of beetroot (BR) dye at room temperature in the presence of titanium dioxide (TiO2) nanoparticles. The dye has been extracted from red beetroot (Beta vulgaris), a rich source of a water-soluble, red-colored pigment known as betanin. Solid-state thin films of this dye with ITO-coated glass/BR dye/Aluminum (Al), and ITO-coated glass/BR dye + TiO2/Al structure have been fabricated using spin-coating. Steady-state dark I–V characteristics have been measured, and, from these data, the trap energy and trap factor have been estimated. The conductivity of the dye increases significantly in the presence of TiO2 nanoparticles. It has been observed that, due to the incorporation of the nanoparticles, the conductivity increases from 6.16 × 10−9 (Ω cm)− 1 to 2.03 × 10−8 (Ω cm)− 1. Trap energy is reduced from 2.06 eV to 1.53 eV and trap factor increased from 0.103 to 0.111, respectively, with the incorporation of nanoparticles. Generally, the trapping of charge carriers plays a major role in organic herbal dye. It is expected that, due to the incorporation of nanoparticles, charge trapping is reduced, which results in the lowering of trap energy and the increment of the trap factor. Nanoparticles act as fillers. Effective mobility was also estimated, and it was found that it increases from 1.236 × 10−4 cm2 v−1 s−1 to 4.069 × 10−4 cm2 v−1 s−1. The findings will be informative when using herbal dye-based thin film devices for future applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, Natural dyes for dye sensitized solar cell: a review. Renew. Sustain. Energy Rev. 69, 705 (2017).

    Article  CAS  Google Scholar 

  2. K.E. Jasim, S. Cassidy, F.Z. Henari, and A.A. Dakhel, Curcumin dye-sensitized solar cell. J. Energy Power Eng. 11, 409 (2017).

    CAS  Google Scholar 

  3. H. Hardani, C. Cari, A. Supriyanto, Efficiency of dye-sensitized solar cell (DSSC) improvement as a light party TiO2-nano particle with extract pigment mangosteen peel (Garcinia mangostana), in AIP Conference Proceedings 2014, 2–9 (2018).

  4. H. Krizova, Natural dyes: their past, present, future and sustainability. 59–71 (2015).

  5. D. Mulati, N. Timonah, and W. Bjorn, The absorption spectra of natural dyes and their suitability as a sensitiser in organic solar cell application. J. Agric. Sci. Technol. 14, 45 (2015).

    Google Scholar 

  6. A.R. Hernández-Martínez, M. Estévez, S. Vargas, and R. Rodríguez, Stabilized conversion efficiency and dye-sensitized solar cells from Beta vulgaris pigment. Int. J. Mol. Sci. 14, 4081 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. H. Naarmann, The development of electrically conducting polymers. Adv. Mater. 2, 345 (1990).

    Article  CAS  Google Scholar 

  8. A.S. Polo, and N.Y.M. Iha, Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol. Energy Mater. Sol. Cells 90, 1936 (2006).

    Article  CAS  Google Scholar 

  9. P. Meredith, C.J. Bettinger, M. Irimia-Vladu, A.B. Mostert, and P.E. Schwenn, Electronic and optoelectronic materials and devices inspired by nature. Rep. Prog. Phys. 76, 1 (2013).

    Article  Google Scholar 

  10. E.D. Glowacki, L. Leonat, G. Voss, M. Bodea, Z. Bozkurt, M. Irimia-Vladu, S. Bauer, and N.S. Sariciftci, Natural and nature-inspired semiconductors for organic electronics. Org. Semicond. Sens. Bioelectron. IV 8118, 1 (2011).

    Google Scholar 

  11. M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J.W. Fergus, V.F. Razumov, H. Sitter, N.S. Sariciftci, and S. Bauer, Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20, 4069 (2010).

    Article  CAS  Google Scholar 

  12. A. Hiremath, A.A. Murthy, S. Thipperudrappa, and K.N. Bharath, Nanoparticles filled polymer nanocomposites: a technological review. Cogent Eng. 8, 1 (2021).

    Article  Google Scholar 

  13. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 43, 3259 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. J.K. Min, Y. Jung, J. Ahn, J.G. Lee, J. Lee, and S.H. Ko, Recent advances in biodegradable green electronic materials and sensor applications. Adv. Mater. 35, 1 (2023).

    Article  Google Scholar 

  15. Y. Chen, T. Liang, L. Chen, Y. Chen, B.R. Yang, Y. Luo, and G.S. Liu, Self-assembly, alignment, and patterning of metal nanowires. Nanoscale Horiz. 7, 1299 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. S. Sreeja, and B. Pesala, Co-sensitization aided efficiency enhancement in betanin–chlorophyll solar cell. Mater. Renew. Sustain. Energy. 7, 1 (2018).

    Article  Google Scholar 

  17. H. B. Singh, K.A. Bharati, Enumeration of dyes. Handb. Nat. Dye. Pigment. 33 (2014).

  18. V. Sivakumar, J.L. Anna, J. Vijayeeswarri, and G. Swaminathan, Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrason. Sonochem. 16, 782 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. S. Mahato, D. Biswas, L.G. Gerling, C. Voz, and J. Puigdollers, Analysis of temperature dependent current–voltage and capacitance–voltage characteristics of an Au/V2O5/n-Si Schottky diode. AIP Adv. 7, 1 (2017).

    Article  Google Scholar 

  20. J. Islam, and A.K.M.A. Hossain, Narrowing band gap and enhanced visible-light absorption of metal-doped non-toxic CsSnCl3 metal halides for potential optoelectronic applications. RSC Adv. 10, 7817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A.K. Karan, S. Bhunia, and N.B. Manik, Study on the conductivity of a sunset yellow dye-based natural organic device. J. Electron. Mater. 51, 7156 (2022).

    Article  CAS  Google Scholar 

  22. E.H. Rhoderick, and R.H. Williams, Metal-Semiconductor Contacts (Oxford: Clarendon Press, 1988).

    Google Scholar 

  23. D. Sahoo, A.K. Karan, Z. Mallick, and N.B. Manik, Synthesis and complex impedance analysis of nano cubic CH3NH3SnI3 perovskite for the development of optoelectronic lead-free Schottky diode. Mater. Sci. Semicond. Process. 155, 1 (2023).

    Article  Google Scholar 

  24. S. Sen, N. B. Manik, Effect of fullerene nanoparticles on barrier height of crystal violet dye based organic device, in 2019 3rd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech, Kolkata, India 2019), pp. 1–6.

  25. S.K. Cheung, and N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986).

    Article  CAS  Google Scholar 

  26. P.K. Das, S. Sen, and N.B. Manik, Study on the series resistance of crystal violet dye-based organic photovoltaic device in presence of single walled carbon nanotubes. Indian J. Phys. 96, 1423–1431 (2022).

    Article  CAS  Google Scholar 

  27. M.A. Lampert, and R.B. Schilling, Current injection in solids: the regional approximation method. Semicond. Semimet. 6, 1 (1970).

    Article  Google Scholar 

  28. C. Carrier, S. Organic, F. Transistors, charge carrier transport in single-crystal organic field-effect transistors. 8080, 27 (2007).

  29. D. Ma, I.A. Hümmelgen, X. Jing, Z. Hong, L. Wang, X. Zhao, F. Wang, and F.E. Karasz, Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio. J. Appl. Phys. 87, 312 (2000).

    Article  CAS  Google Scholar 

  30. S.M.H. Rizvi, P. Mantri, and B. Mazhari, Traps signature in steady state current-voltage characteristics of organic diode. J. Appl. Phys. 115, 1 (2014).

    Article  Google Scholar 

  31. M. Brötzmann, U. Vetter, and H. Hofsäss, BN/ZnO heterojunction diodes with apparently giant ideality factors. J. Appl. Phys. 106, 1 (2009).

    Article  Google Scholar 

  32. S. Bhunia, P. Kumar, S. Basu, and N.B. Manik, Effect of titanium dioxide on solid state turmeric dye thin film. J. Indian Chem. 97, 2943 (2020).

    Google Scholar 

  33. H. Elamen, Y. Badali, M.T. Güneşer, and Ş Altındal, The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions. J. Mater. Sci. Mater. Electron. 31, 18640 (2020).

    Article  Google Scholar 

  34. A. Mekki, R. Ocaya, A. Dere, A.A. Al-ghamdi, K. Harrabi, and F. Yakuphanoglu, Organic semiconductor: graphene-oxide/p-Si photodiodes. J. Nanoelectron. Optoelectron. 11, 153 (2015).

    Article  Google Scholar 

  35. O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, Ş Altindal, and I. Uslu, Evaluation of electrical and photovoltaic behaviours as comparative of Au/n-GaAs (MS) diodes with and without pure and graphene (Gr)-doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions. Compos. Part B Eng. 98, 260 (2016).

    Article  Google Scholar 

  36. F. Yakuphanoglu, and R.S. Anand, Charge transport properties of an organic solar cell. Synth. Met. 160, 2250 (2010).

    Article  CAS  Google Scholar 

  37. N. Aslan, Structural, photovoltaic and optoelectronic properties of graphene–amorphous carbon nanocomposite. J. Mater. Sci. Mater. Electron. 32, 16927 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I sincerely express my gratitude to the Govt. of West Bengal for providing me with fellowship (Reg. No. WBP228211392295). I also acknowledge my colleagues for their constant support.

Author information

Authors and Affiliations

Authors

Contributions

Subhra Rakshit: Writing—review & editing, Writing—original draft, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Arnab Kanti Karan: Visualization, Software, Formal analysis. N B Manik: Writing—review & editing, Visualization, Validation, Supervision.

Corresponding author

Correspondence to Subhra Rakshit.

Ethics declarations

Competing Interest

The authors of this manuscript declare that there are no competing interest to disclose. The corresponding author affirms this on behalf of all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakshit, S., Karan, A.K. & Manik, N.B. Enhanced Electrical Transport Properties of Beetroot Dye-Based Thin Film in Presence of Titanium Dioxide Nanoparticles. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11101-0

Keywords

Navigation