Skip to main content
Log in

A Cross-Linked Gel Polymer Electrolyte Composed of PEGDA and Acrylonitrile for High-Voltage Lithium Metal Batteries

  • Topical Collection: High-Energy Battery Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) diacrylate (PEGDA)-based gel polymer electrolytes (GPEs) offer several advantages for high-voltage lithium metal batteries (LMBs). However, the limited Li+ transport capability hinders the wide application of PEGDA. A cross-linked GPE consisting of PEGDA and acrylonitrile (AN) (designated as PA11 electrolyte) is synthesized through molecular design to investigate the impact of AN incorporation on the PEGDA-based GPE. AN exhibits good compatibility with PEGDA, and the resulting cross-linked copolymer effectively reduces the crystallinity of GPE, thereby enhancing its Li+ transport capability. At 25°C, the PA11 electrolyte exhibits high ionic conductivity (2.04 × 10−4 S cm−1), broad electrochemical window (− 0.5 V to 5.32 V versus Li+/Li), and good stability towards lithium metal showing stable deposition and stripping of lithium for 1000 h. Additionally, LFP||Li cells assembled with designed PA11 electrolyte demonstrate discharge capacities of 150.4 mA h g−1 at 0.05 C and 122.9 mA h g−1 at 0.5 C. Moreover, the PA11 electrolyte can be applied in LMFP-based high-voltage LMBs with a capacity retention ratio of 84.9% after 20 cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139 (2016).

    Article  Google Scholar 

  2. Y. Cao, M. Li, J. Lu, J. Liu, and K. Amine, Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. T.S. Wang, X. Liu, Y. Wang, and L.Z. Fan, High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries. Adv. Funct. Mater. 31, 2001973 (2020).

    Article  Google Scholar 

  4. D. Lin, Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Y. Zhang, T.-T. Zuo, J. Popovic, K. Lim, Y.-X. Yin, J. Maier, and Y.-G. Guo, Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56 (2020).

    Article  CAS  Google Scholar 

  6. H. Li, H. Wang, Z. Xu, K. Wang, M. Ge, L. Gan, Y. Zhang, Y. Tang, and S. Chen, Thermal-responsive and fire-resistant materials for high-safety lithium-ion batteries. Small 17, 2103679 (2021).

    Article  CAS  Google Scholar 

  7. X.-B. Cheng, C.-Z. Zhao, Y.-X. Yao, H. Liu, and Q. Zhang, Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 5, 74 (2019).

    Article  CAS  Google Scholar 

  8. J. Shi, Z. Yao, J. Xiang, C. Cai, F. Tu, Y. Zhang, W. Yao, Q. Jia, Y. Zhou, S. Shen, and Y. Yang, High-conductivity Li2ZrCl6 electrolytes via an optimized two-step ball-milling method for all-solid-state lithium-metal batteries. ACS Sustain. Chem. Eng. 12, 2009 (2024).

    Article  CAS  Google Scholar 

  9. L. Zheng, J. Shi, G. Ren, T. Tang, Y. Yang, S. Shen, and Z. Yao, Enhanced ionic conductivity toward air-stable Li4SnS4 solid electrolytes achieved by soft acid Bi3+ doping. Energy Fuels 38, 3470 (2024).

    Article  CAS  Google Scholar 

  10. D. Chen, M. Zhu, P. Kang, T. Zhu, H. Yuan, J. Lan, X. Yang, and G. Sui, Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Adv. Sci. 9, 2103663 (2021).

    Article  Google Scholar 

  11. J. Sun, Y. Li, Q. Zhang, C. Hou, Q. Shi, and H. Wang, A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem. Eng. J. 375, 121922 (2019).

    Article  CAS  Google Scholar 

  12. J. Yi, Y. Liu, Y. Qiao, P. He, and H. Zhou, Boosting the cycle life of Li-O2 batteries at elevated temperature by employing a hybrid polymer–ceramic solid electrolyte. ACS Energy Lett. 2, 1378 (2017).

    Article  CAS  Google Scholar 

  13. Z. Wei, Z. Zhang, S. Chen, Z. Wang, X. Yao, Y. Deng, and X. Xu, UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2//Li solid state battery working at ambient temperature. Energy Storage Mater. 22, 337 (2019).

    Article  Google Scholar 

  14. M.S. Park, S.B. Ma, D.J. Lee, D. Im, S.-G. Doo, and O. Yamamoto, A highly reversible lithium metal anode. Sci. Rep. 4, 3815 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. W. Fan, N.W. Li, X. Zhang, S. Zhao, R. Cao, Y. Yin, Y. Xing, J. Wang, Y.G. Guo, and C. Li, A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries. Adv. Sci. 5, 1800559 (2018).

    Article  Google Scholar 

  16. N. Hasan, M. Pulst, M.H. Samiullah, and J. Kressler, Comparison of Li+-ion conductivity in linear and crosslinked poly(ethylene oxide). J. Polym. Sci. Part. B Polym. Phys. 57, 21 (2018).

    Article  Google Scholar 

  17. Y. Wang, J. Qiu, J. Peng, J. Li, and M. Zhai, One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J. Mater. Chem. A 5, 12393 (2017).

    Article  CAS  Google Scholar 

  18. G. Wang, P. He, and L.Z. Fan, Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery. Adv. Funct. Mater. 31, 2007198 (2020).

    Article  Google Scholar 

  19. G. Fu and T. Kyu, Effect of side-chain branching on enhancement of ionic conductivity and capacity retention of a solid copolymer electrolyte membrane. Langmuir 33, 13973 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. W. He, Z. Cui, X. Liu, Y. Cui, J. Chai, X. Zhou, Z. Liu, and G. Cui, Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim. Acta 225, 151 (2017).

    Article  CAS  Google Scholar 

  21. J. Suk, Y.H. Lee, D.Y. Kim, D.W. Kim, S.Y. Cho, J.M. Kim, and Y. Kang, Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. J. Power. Sour. 334, 154 (2016).

    Article  CAS  Google Scholar 

  22. D. Cai, X. Qi, J. Xiang, X. Wu, Z. Li, X. Luo, X. Wang, X. Xia, C. Gu, and J. Tu, A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery. Chem. Eng. J. 435, 135030 (2022).

    Article  CAS  Google Scholar 

  23. M. Liu, Y. Wang, M. Li, G. Li, B. Li, S. Zhang, H. Ming, J. Qiu, J. Chen, and P. Zhao, A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries. Electrochim. Acta 354, 136622 (2020).

    Article  CAS  Google Scholar 

  24. H.J. Choi, Y.-J. Jeong, H.S. Choi, J.S. Kim, J. Ahn, W. Shin, B.M. Jung, E. Cho, H.J. Lee, J.H. Choi, M.-J. Choi, J. Yoon, J.W. Yi, G.-T. Hwang, J.-K. Yoo, and K. Chung, Gel polymer electrolyte with improved adhesion property based on poly(4-hydroxybutyl acrylate) for lithium-ion batteries. Chem. Eng. J. 474, 145673 (2023).

    Article  CAS  Google Scholar 

  25. F. Wu, H. Yang, Y. Bai, and C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31, 1806510 (2019).

    Article  Google Scholar 

  26. D. Dong, B. Zhou, Y. Sun, H. Zhang, G. Zhong, Q. Dong, F. Fu, H. Qian, Z. Lin, D. Lu, Y. Shen, J. Wu, L. Chen, and H. Chen, Polymer electrolyte glue: a universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett. 19, 2343 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. F. Wu, K. Zhang, Y. Liu, H. Gao, Y. Bai, X. Wang, and C. Wu, Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy Storage Mater. 33, 26 (2020).

    Article  Google Scholar 

  28. J. Xiao, X. Zhang, H. Fan, Y. Zhao, Y. Su, H. Liu, X. Li, Y. Su, H. Yuan, T. Pan, Q. Lin, L. Pan, and Y. Zhang, Stable solid electrolyte interphase in situ formed on magnesium-metal anode by using a perfluorinated alkoxide-based all-magnesium salt electrolyte. Adv. Mater. 34, 2203783 (2022).

    Article  CAS  Google Scholar 

  29. J. Ma, Y. Wu, H. Jiang, X. Yao, F. Zhang, X. Hou, X. Feng, and H. Xiang, In situ directional polymerization of poly(1, 3-dioxolane) solid electrolyte induced by cellulose paper-based composite separator for lithium metal batteries. Energy Environ. Mater. 6, 12370 (2022).

    Article  Google Scholar 

  30. J. Yu, X. Lin, J. Liu, J.T.T. Yu, M.J. Robson, G. Zhou, H.M. Law, H. Wang, B.Z. Tang, and F. Ciucci, In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv. Energy Mater. 12, 2102932 (2021).

    Article  Google Scholar 

  31. Z. Geng, Y. Huang, G. Sun, R. Chen, W. Cao, J. Zheng, and H. Li, In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy 91, 106679 (2022).

    Article  CAS  Google Scholar 

  32. Z. Li, R. Yu, S. Weng, Q. Zhang, X. Wang, and X. Guo, Tailoring polymer electrolyte ionic conductivity for production of low-temperature operating quasi-all-solid-state lithium metal batteries. Nat. Commun. 14, 482 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. J. Chai, Z. Liu, J. Ma, J. Wang, X. Liu, H. Liu, J. Zhang, G. Cui, and L. Chen, In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 4, 1600377 (2016).

    Article  Google Scholar 

  34. A. Du, H. Zhang, Z. Zhang, J. Zhao, Z. Cui, Y. Zhao, S. Dong, L. Wang, X. Zhou, and G. Cui, A crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide-working-temperature-range rechargeable magnesium batteries. Adv. Mater. 31, 1805930 (2019).

    Article  Google Scholar 

  35. Y.G. Cho, C. Hwang, D.S. Cheong, Y.S. Kim, and H.K. Song, Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Adv. Mater. 31, 1804909 (2018).

    Article  Google Scholar 

  36. Y. Lin, E. Bilotti, C.W.M. Bastiaansen, and T. Peijs, Transparent semi-crystalline polymeric materials and their nanocomposites: a review. Polym. Eng. Sci. 60, 2351 (2020).

    Article  CAS  Google Scholar 

  37. G. Luo, B. Yuan, T. Guan, F. Cheng, W. Zhang, and J. Chen, Synthesis of single lithium-ion conducting polymer electrolyte membrane for solid-state lithium metal batteries. ACS Appl. Energy Mater. 2, 3028 (2019).

    Article  CAS  Google Scholar 

  38. Z. Lv, Q. Zhou, S. Zhang, S. Dong, Q. Wang, L. Huang, K. Chen, and G. Cui, Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Mater. 37, 215 (2021).

    Article  Google Scholar 

  39. B. Ye, X. Cai, D. Wang, P. Saha, and G. Wang, A novel poly(vinyl carbonate-co-butyl acrylate) quasi-solid-state electrolyte as a strong catcher for lithium polysulfide in Li-S batteries. Electrochim. Acta 332, 135463 (2020).

    Article  CAS  Google Scholar 

  40. Z. Wang, B. Huang, R. Xue, X. Huang, and L.J.S.S.I. Chen, Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ion. 121, 141 (1999).

    Article  CAS  Google Scholar 

  41. C. Wang, K.R. Adair, J. Liang, X. Li, Y. Sun, X. Li, J. Wang, Q. Sun, F. Zhao, X. Lin, R. Li, H. Huang, L. Zhang, R. Yang, S. Lu, and X. Sun, Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv. Funct. Mater. 29, 1900392 (2019).

    Article  Google Scholar 

  42. R. Lin, Y. He, C. Wang, P. Zou, E. Hu, X.-Q. Yang, K. Xu, and H.L. Xin, Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries. Nat. Nanotechnol. 17, 768 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, and M. Armand, The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 3, 476 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. A.-H. Ban, S.-J. Pyo, W.J. Bae, H.-S. Woo, J. Moon, and D.-W.J.C.E.J. Kim, Dual-type gel polymer electrolyte for high-voltage lithium metal batteries with excellent cycle life. Chem. Eng. J. 475, 146266 (2023).

    Article  CAS  Google Scholar 

  45. X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, and Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article  Google Scholar 

  46. S. Choudhury, R. Mangal, A. Agrawal, and L.A. Archer, A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. W. Zha, J. Li, W. Li, C. Sun, and Z. Wen, Anchoring succinonitrile by solvent-Li+ associations for high-performance solid-state lithium battery. Chem. Eng. J. 406, 126754 (2021).

    Article  CAS  Google Scholar 

  48. Y. Qiu, D. Lu, Y. Gai, and Y. Cai, Adiponitrile (ADN): a stabilizer for the LiNi0.8Co0.1Mn0.1O2 (NCM811) electrode/electrolyte interface of a graphite/NCM811 Li-ion cell. ACS Appl. Mater. Interfaces 14, 11398 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. C. Li, C. Zheng, F. Cao, Y.Q. Zhang, and X.H. Xia, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).

    Article  CAS  Google Scholar 

  50. L. Huang, T.X. Guan, H. Su, Y. Zhong, F. Cao, Y.Q. Zhang, X.H. Xia, X.L. Wang, N.Z. Bao, and J.P. Tu, Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angew. Chem. Int. Edit. 61, 44 (2022).

    Article  Google Scholar 

  51. P. Liu, Z. Qiu, F. Cao, Y.Q. Zhang, X.P. He, S.H. Shen, X.Q. Liang, M.H. Chen, C. Wang, W.J. Wan, Y. Xia, X.H. Xia, and W.K. Zhang, Liquid-source plasma technology for construction of dual bromine-fluorine-enriched interphases on lithium metal anodes with enhanced performance. J. Mater. Sci. Technol.ci. Technol. 177, 68 (2024).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52102315) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY21E020010, No. LQ23E020009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yefeng Yang or Zhujun Yao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 739 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Ren, G., Yang, Y. et al. A Cross-Linked Gel Polymer Electrolyte Composed of PEGDA and Acrylonitrile for High-Voltage Lithium Metal Batteries. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11096-8

Keywords

Navigation