Skip to main content
Log in

Structural and Electronic Properties of Indium-Doped n-type Cd-Se-Te Crystals

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a comprehensive investigation into the potential of n-type indium-doped cadmium selenide telluride (CST:In) as a high-performance candidate for solar cell applications, without the need for resource-intensive post-growth treatments that are required for CdTe:In. We compared undoped CST and CST:In crystals under different growth conditions, analyzing their structural and electronic properties using x-ray diffraction (XRD), electron probe microanalysis (EPMA), current–voltage (IV) and Hall effect measurements, time-resolved photoluminescence (TRPL), optical transmission, and photoluminescence (PL) mapping. The results reveal that as-grown CST:In crystals achieve nearly 100% carrier activation, yielding an electron concentration of 9.5 × 1018 cm−3, mobility of 653 cm2/V·s and a 5 ns lifetime which approaches the radiative limit. Furthermore, comparison of PL maps from crystal growths having different cooling profiles suggests a strong effect of cooling rate on selenium segregation and cubic/hexagonal/polytype phase distribution. Slower cooling leads to a more homogeneous cubic structure with lower Se segregation, while a faster cooling rate results in increased Se segregation, and twin boundaries and stacking faults with polytypic and hexagonal character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Scarpulla, B. McCandless, A.B. Phillips, Y. Yan, M.J. Heben, C. Wolden, G. Xiong, W.K. Metzger, D. Mao, D. Krasikov, I. Sankin, S. Grover, A. Munshi, W. Sampath, J.R. Sites, A. Bothwell, D. Albin, M.O. Reese, A. Romeo, M. Nardone, R. Klie, J.M. Walls, T. Fiducia, A. Abbas, and S.M. Hayes, CdTe-Based Thin Film Photovoltaics: Recent Advances, Current Challenges and Future Prospects. Sol. Energy Mater. Sol. Cells 255, 112289 (2023).

    CAS  Google Scholar 

  2. A. Nagaoka, D. Kuciauskas, J. McCoy, and M.A. Scarpulla, High P-Type Doping, Mobility, and Photocarrier Lifetime in Arsenic-Doped CdTe Single Crystals. Appl. Phys. Lett. 112, 192101 (2018).

    Google Scholar 

  3. J.J. Loferski, Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion. J. Appl. Phys. 27, 777 (2004).

    Google Scholar 

  4. W. S. Queisser Hans, Detailed Balance Limit of Efficiency of p–n Junction Solar Cells, in Renewable Energy (Routledge, 2011).

  5. C.H. Henry, Limiting Efficiencies of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells. J. Appl. Phys. 51, 4494 (2008).

    Google Scholar 

  6. R. Mallick, X. Li, C. Reich, X. Shan, W. Zhang, T. Nagle, L. Bok, E. Bicakci, N. Rosenblatt, D. Modi, R. Farshchi, C. Lee, J. Hack, S. Grover, N. Wolf, W.K. Metzger, D. Lu, and G. Xiong, Arsenic-Doped CdSeTe Solar Cells Achieve World Record 22.3% Efficiency. IEEE J. Photovolt. 13, 510 (2023).

    Google Scholar 

  7. S. Krum and S. Haymore, First Solar Achieves World Record 18.6% Thin Film Module Conversion Efficiency, (2015).

  8. J.R. Sites, Quantification of Losses in Thin-Film Polycrystalline Solar Cells. Sol. Energy Mater. Sol. Cells 75, 243 (2003).

    CAS  Google Scholar 

  9. J.M. Burst, J.N. Duenow, D.S. Albin, E. Colegrove, M.O. Reese, J.A. Aguiar, C.-S. Jiang, M. Patel, M.M. Al-Jassim, and D. Kuciauskas, CdTe Solar Cells with Open-Circuit Voltage Breaking the 1 V Barrier. Nat. Energy 1, 1 (2016).

    Google Scholar 

  10. R.W. Birkmire and B.E. McCandless, CdTe Thin Film Technology: Leading Thin Film PV into the Future. Curr. Opin. Solid State Mater. Sci. 14, 139 (2010).

    CAS  Google Scholar 

  11. H. Zhao, A. Farah, D. Morel, and C.S. Ferekides, The Effect of Impurities on the Doping and VOC of CdTe/CdS Thin Film Solar Cells. Thin Solid Films 517, 2365 (2009).

    CAS  Google Scholar 

  12. N. Muthukumarasamy, S. Jayakumar, M.D. Kannan, and R. Balasundaraprabhu, Structural Phase Change and Optical Band Gap Bowing in Hot Wall Deposited CdSexTe1−x Thin Films. Sol. Energy 83, 522 (2009).

    CAS  Google Scholar 

  13. N.R. Paudel and Y. Yan, Enhancing the Photo-Currents of CdTe Thin-Film Solar Cells in Both Short and Long Wavelength Regions. Appl. Phys. Lett. 105, 183510 (2014).

    Google Scholar 

  14. D.E. Swanson, J.R. Sites, and W.S. Sampath, Co-Sublimation of CdSexTe1−x Layers for CdTe Solar Cells. Sol. Energy Mater. Sol. Cells 159, 389 (2017).

    CAS  Google Scholar 

  15. J.D. Poplawsky, W. Guo, N. Paudel, A. Ng, K. More, D. Leonard, and Y. Yan, Structural and Compositional Dependence of the CdTexSe1−x Alloy Layer Photoactivity in CdTe-Based Solar Cells. Nat. Commun. 7, 1 (2016).

    Google Scholar 

  16. C. Hagendorf, M. Ebert, M. Raugei, D. Lincot, J. BEngoechea, M. Rodriguez, and A. Lagunas, Assessment of Performance, Environmental, Health and Safety Aspects of First Solar’s CdTe PV Technology, Fraunhofer Inst. Oxf. Brookes Univ. CNRS CENER (2017).

  17. U. Roy, A. Bolotnikov, G. Camarda, Y. Cui, A. Hossain, K. Lee, W. Lee, R. Tappero, G. Yang, and R. Gul, High Compositional Homogeneity of CdTexSe1-x Crystals Grown by the Bridgman Method, APL Mater. 3, 026102 (2015).

  18. K. Zanio, Purification of CdTe from, Tellurium-Rich Solutions. J. Electron. Mater. 3, 327 (1974).

    CAS  Google Scholar 

  19. K. Kim, J. Hong, and S. Kim, Electrical Properties of Semi-Insulating CdTe0:9Se0:1: Cl Crystal and Its Surface Preparation. J. Cryst. Growth 310, 91 (2008).

    CAS  Google Scholar 

  20. S. Al-Heniti and A. Al-Hajry, Lattice Thermal Expansion of CdTe0.9Se0.1 Solid Solution. J. Alloys Compd. 387, L5 (2005).

    CAS  Google Scholar 

  21. F. Bassani, K. Saminadayar, S. Tatarenko, K. Kheng, R.T. Cox, N. Magnea, and C. Grattepain, Indium Doping of CdTe Layers and CdTe/Cd1−xZnxTe Microstructures. J. Cryst. Growth 117, 391 (1992).

    CAS  Google Scholar 

  22. F. Bassani, S. Tatarenko, K. Saminadayar, N. Magnea, R. Cox, A. Tardot, and C. Grattepain, Indium Doping of CdTe and Cd1−x ZnxTe by Molecular-beam Epitaxy: Uniformly and Planar-doped Layers, Quantum Wells, and Superlattices. J. Appl. Phys. 72, 2927 (1992).

    CAS  Google Scholar 

  23. R. Grill, P. Fochuk, J. Franc, B. Nahlovskyy, P. Höschl, P. Moravec, Z. Zakharuk, Y. Nykonyuk, and O. Panchuk, High-temperature Defect Study of Tellurium-Enriched CdTe. Phys. Status Solidi B 243, 787 (2006).

    CAS  Google Scholar 

  24. S.K. Swain, J.N. Duenow, S.W. Johnston, M. Amarasinghe, J.J. McCoy, W.K. Metzger, and K.G. Lynn, Approach to Defect-Free Lifetime and High Electron Density in CdTe. J. Electron. Mater. 48, 4235 (2019).

    CAS  Google Scholar 

  25. P. Fochuk, O. Panchuk, P. Feychuk, L. Shcherbak, A. Savitskyi, O. Parfenyuk, M. Ilashchuk, M. Hage-Ali, and P. Siffert, Indium Dopant Behaviour in CdTe Single Crystals. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect Assoc. Equip. 458, 104 (2001).

    CAS  Google Scholar 

  26. S. Tatarenko, F. Bassani, K. Saminadayar, R. Cox, P. Jouneau, and N. Magnea, Indium Doping of (001), (111) and (211) CdTe Layers Grown by Molecular Beam Epitaxy. J. Cryst. Growth 127, 318 (1993).

    CAS  Google Scholar 

  27. G. Karczewski, A. Zakrzewski, L. Dobaczewski, W. Dobrowolski, E. Grodzicka, J. Jaroszyński, T. Wojtowicz, and J. Kossut, Properties of Epitaxially Grown CdTe Layers Doped with Indium. Thin Solid Films 267, 79 (1995).

    CAS  Google Scholar 

  28. S. Seto, K. Suzuki, V.N. Abastillas Jr., and K. Inabe, Compensating Related Defects in In-Doped Bulk CdTe. J. Cryst. Growth 214–215, 974 (2000).

    Google Scholar 

  29. W. Mohammed, The Electrical Properties of Post-Deposition Annealed and as-Deposited In-Doped CdTe Thin Films. Renew. Energy 26, 285 (2002).

    CAS  Google Scholar 

  30. M. Türker, J. Kronenberg, M. Deicher, H. Wolf, T. Wichert, and ISOLDE-Collaboration, Formation of DX-Centers in Indium Doped CdTe, in (Springer, 2008), pp. 231–238.

  31. X.-H. Zhao, S. Liu, Y. Zhao, C.M. Campbell, M.B. Lassise, Y.-S. Kuo, and Y.-H. Zhang, Electrical and Optical Properties of N-Type Indium-Doped CdTe/Mg0.46Cd0.54Te Double Heterostructures. IEEE J. Photovolt. 6, 552 (2016).

    Google Scholar 

  32. T.K. Al-Hamdi, S.W. McPherson, S.K. Swain, J. Jennings, J.N. Duenow, X. Zheng, D.S. Albin, T. Ablekim, E. Colegrove, M. Amarasinghe, A. Ferguson, W.K. Metzger, C. Szeles, and K.G. Lynn, CdTe Synthesis and Crystal Growth Using the High-Pressure Bridgman Technique. J. Cryst. Growth 534, 125466 (2020).

    CAS  Google Scholar 

  33. J. Shang, M. Murugesan, S. Bigbee-Hansen, S.K. Swain, J.N. Duenow, S. Johnston, S.P. Beckman, H.H. Walker, R.W. Antonio, and J.S. McCloy, The Effect of Dopant Concentration and Annealing Treatments on N-Type Iodine Doped CdTe. J. Alloys Compd. 960, 170625 (2023).

    CAS  Google Scholar 

  34. A. Canul, D. Thapa, J. Huso, L. Bergman, R.V. Williams, and R. Machleidt, Mixed-Strategy Approach to Band-Edge Analysis and Modeling in Semiconductors. Phys. Rev. B 101, 195308 (2020).

    CAS  Google Scholar 

  35. T.C.M. Santhosh, K.V. Bangera, and G.K. Shivakumar, Synthesis and Band Gap Tuning in CdSe(1–x)Te(x) Thin Films for Solar Cell Applications. Sol. Energy 153, 343 (2017).

    CAS  Google Scholar 

  36. A.J. Strauss and J. Steininger, Phase Diagram of the CdTe-CdSe Pseudobinary System. J. Electrochem. Soc. 117, 1420 (1970).

    CAS  Google Scholar 

  37. A. Verma and P. Krishna, Polymorphism and Polytypism in Crystals, John Wiley Sons Inc., (1966).

  38. S. Mardix, Polytypism: A Controlled Thermodynamic Phenomenon. Phys. Rev. B 33, 8677 (1986).

    CAS  Google Scholar 

  39. J. McCloy and R. Korenstein, Variability in Chemical Vapor Deposited Zinc Sulfide: Assessment of Legacy and International CVD ZnS Materials, in Vol. 7302 (SPIE, 2009), pp. 199–206.

  40. K. Ohata, J. Saraie, and T. Tanaka, Phase Diagram of the CdS-CdTe Pseudobinary System. Jpn. J. Appl. Phys. 12, 1198 (1973).

    CAS  Google Scholar 

  41. S. Patil and P. Pawar, Structural and Optical Studies of Thermally Evaporated CdSeXTe1-X Thin Films. J. Chem. Biol. Phys. Sci. JCBPS 2, 1472 (2012).

    CAS  Google Scholar 

  42. R. Kharabe, S. Jadhav, A. Shaikh, D. Patil, and B. Chougule, Magnetic Properties of Mixed Li–Ni–Cd Ferrites. Mater. Chem. Phys. 72, 77 (2001).

    CAS  Google Scholar 

  43. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, and S.K. Tripathi, Indium Doping Induced Modification of the Structural, Optical and Electrical Properties of Nanocrystalline CdSe Thin Films. J. Alloys Compd. 564, 42 (2013).

    CAS  Google Scholar 

  44. J.S. McCloy, J.V. Ryan, T. Droubay, T.C. Kaspar, S. Chambers, and D.C. Look, Magnetotransport Properties of High Quality Co:ZnO and Mn:ZnO Single Crystal Pulsed Laser Deposition Films: Pitfalls Associated with Magnetotransport on High Resistivity Materials. Rev. Sci. Instrum. 81, 063902 (2010).

    PubMed  Google Scholar 

  45. J. D. Friedl, E. Bastola, R. A. Awni, X. Mathew, A. B. Phillips, Y. Yan, and M. J. Heben, Influence of Se Grading on the Free Carrier Profile of CdSeTe/CdTe Solar Cells, in 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC) (2022), pp. 0761–0765.

  46. D. R. Lide, CRC Handbook of Chemistry and Physics, Vol. 85 (CRC press, 2004).

  47. W.M.H. Sachtler, G.J.H. Dorgelo, and A.A. Holscher, The Work Function of Gold. Surf. Sci. 5, 221 (1966).

    CAS  Google Scholar 

  48. S.A. Fayek and S.M. El-Sayed, Characterization of Short-Range Order in an Amorphous Cd–Se–Te System by Wide Angle X-Ray Scattering(WAXS). NDT E Int. 36, 619 (2003).

    CAS  Google Scholar 

  49. F. Peiris, Z. Weber, Y. Chen, and G. Brill, Optical Properties of CdSexTe1–x Epitaxial Films Studied by Spectroscopic Ellipsometry. J. Electron. Mater. 33, 724 (2004).

    CAS  Google Scholar 

  50. J.S. McCloy, R. Korenstein, and B. Zelinski, Effects of Temperature, Pressure, and Metal Promoter on the Recrystallized Structure and Optical Transmission of Chemical Vapor Deposited Zinc Sulfide. J. Am. Ceram. Soc. 92, 1725 (2009).

    CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Numbers DE-EE0007537 and DE-EE0008548. The authors thank Scott Boroughs for assistance with the microprobe WDS, M. C. Dixon Wilkins for assistance with XRD, Santosh K. Swain for helping crystal growth, Dr. Matthew D. McCluskey for editing the paper, and Darius Kuciauskas for helping 2PE TRPL measurement.

Author information

Authors and Affiliations

Authors

Contributions

Jing Shang: Writing-draft, conceptualization, formal analysis. Magesh Murugesan: Crystal growth, annealing, writing-review, and editing. Rubi Gul: Hall and IV measurements. Samuel Bigbee-Hansen: Optical measurements. Joseph M. Tallan: XRD and EPMA. Joel Duenow: Conceptualization, writing-review and editing, Hall measurements, supervision, funding acquisition. John S. McCloy: Conceptualization, writing-draft, writing-review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to John S. McCloy.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Murugesan, M., Gul, R. et al. Structural and Electronic Properties of Indium-Doped n-type Cd-Se-Te Crystals. J. Electron. Mater. 53, 3848–3860 (2024). https://doi.org/10.1007/s11664-024-11094-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11094-w

Keywords

Navigation