Skip to main content
Log in

Investigation of the Structural and Optical Properties of g-C3N4/ZrO2 Nanocomposites

  • 28th International Conference on Nuclear Tracks and Radiation Measurements
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study used ultrasonication method to prepare graphitic carbon nitride (g-C3N4)/zirconium oxide (ZrO2) nanocomposites with varying ratios. Various approaches were used to characterize the as-prepared nanocomposites. The structural properties were investigated by x-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. XRD patterns showed that pure g-C3N4 has a unique peak, while ZrO2 has a monoclinic phase with no additional phases. The nanocomposites exhibited peaks from both materials, indicating the successful synthesis of the nanocomposites. The optical properties of the nanocomposites were studied using UV–Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy. According to Tauc’s plot, the nanocomposites g-C3N4:ZrO2{1:0.5} (CZ1) and g-C3N4:ZrO2{1:2} (CZ2) showed bandgaps of 2.92 eV and 2.93 eV, respectively. The photoluminescence emission of the nanocomposites displayed a broad peak centered at ~ 450 nm. According to the CIE diagram, the nanocomposites exhibited strong emission in the blue region, with 80.4% purity. The average lifetime decay times of the nanocomposites were 0.18 ms and 0.01 ms. Based on these findings, it can be concluded that this material has the potential for use in the field of optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Murali, G. Lokhande, K.A. Deo, A. Brokesh, and A.K. Gaharwar, Emerging 2D nanomaterials for biomedical applications. Mater. Today 50, 276–302 (2021).

    Article  CAS  Google Scholar 

  2. H. Zhang, H.-M. Cheng, and P. Ye, 2D nanomaterials: beyond graphene and transition metal dichalcogenides. Chem. Soc. Rev. 47, 6009–6012 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. B. Lu, Z. Zhu, B. Ma, W. Wang, R. Zhu, and J. Zhang, 2D MXene nanomaterials for versatile biomedical applications: current trends and future prospects. Small 17, 2100946 (2021).

    Article  CAS  Google Scholar 

  4. K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C Mater. 5, 11992–12022 (2017).

    Article  CAS  Google Scholar 

  5. Y. Tang, H. Song, Y. Su, and Y. Lv, Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 85, 11876–11884 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, and K. Domen, Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C 113, 4940–4947 (2009).

    Article  CAS  Google Scholar 

  7. J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 5, 8921 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. H.Y. Hoh, Y. Zhang, Y.L. Zhong, and Q. Bao, Harnessing the potential of graphitic carbon nitride for optoelectronic applications. Adv. Opt. Mater. 9(16), 2100146 (2021).

    Article  CAS  Google Scholar 

  9. X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, and S. Yang, Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv. Funct. Mater. 26, 1719–1728 (2016).

    Article  CAS  Google Scholar 

  10. Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, and J. Qiu, Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 3, 1943 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. M.M. Taha, L.G. Ghanem, M.A. Hamza, and N.K. Allam, Highly stable supercapacitor devices based on three-dimensional bioderived carbon encapsulated g-C3N4 nanosheets. ACS Appl. Energy Mater. 4, 10344–10355 (2021).

    Article  CAS  Google Scholar 

  12. W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, and S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are We a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, Metal-free catalysis of sustainable Friedel-Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds. Chem. Commun. (2006). https://doi.org/10.1039/B608532F.

    Article  Google Scholar 

  14. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, and H. Wang, Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B 217, 388–406 (2017).

    Article  CAS  Google Scholar 

  15. L. Bai, H. Huang, S. Yu, D. Zhang, H. Huang, and Y. Zhang, Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors. J. Energy Chem. 64, 214–235 (2022).

    Article  CAS  Google Scholar 

  16. J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, Transition metal oxides for organic electronics: energetics. Device Phys. Appl. Adv. Mater. 24, 5408–5427 (2012).

    CAS  Google Scholar 

  17. M.Z. Rahman, F. Raziq, H. Zhang, and J. Gascon, Key strategies for enhancing H2 production in transition metal oxide based photocatalysts. Angew. Chem. 135(48), e202305385 (2023).

    Article  Google Scholar 

  18. K. Katsumata, R. Motoyoshi, N. Matsushita, and K. Okada, Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J. Hazard. Mater. 260, 475–482 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. S. Le, T. Jiang, Y. Li, Q. Zhao, Y. Li, W. Fang, and M. Gong, Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl. Catal. B 200, 601–610 (2017).

    Article  CAS  Google Scholar 

  20. I. Rabani, R. Zafar, K. Subalakshmi, H.-S. Kim, C. Bathula, and Y.-S. Seo, A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water. J. Hazard. Mater. 407, 124360 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. D. Yan, X. Wu, J. Pei, C. Wu, X. Wang, and H. Zhao, Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties. Ceram. Int. 46, 696–702 (2020).

    Article  CAS  Google Scholar 

  22. G.R. Surikanti, P. Bajaj, and M.V. Sunkara, g-C3N4-mediated synthesis of Cu2O To obtain porous composites with improved visible light photocatalytic degradation of organic dyes. ACS Omega 4, 17301–17316 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Chen, M. Xie, L. Kong, W. Lu, Z. Feng, and J. Zhan, Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. J. Hazard. Mater. 390, 122146 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. A. Alaghmandfard and K. Ghandi, A comprehensive review of graphitic carbon nitride (g-C3N4)–metal oxide-based nanocomposites: potential for photocatalysis and sensing. Nanomaterials 12, 294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. V. Hasija, P. Raizada, P. Singh, N. Verma, A.A.P. Khan, A. Singh, R. Selvasembian, S.Y. Kim, C.M. Hussain, V.-H. Nguyen, and Q. Van Le, Progress on the photocatalytic reduction of hexavalent Cr(VI) using engineered graphitic carbon nitride. Process Saf. Environ. Prot. 152, 663–678 (2021).

    Article  CAS  Google Scholar 

  26. L. Liu, X. Luo, Y. Li, F. Xu, Z. Gao, X. Zhang, Y. Song, H. Xu, and H. Li, Facile synthesis of few-layer g-C3N4/ZnO composite photocatalyst for enhancing visible light photocatalytic performance of pollutants removal. Colloids Surf. A Physicochem. Eng. Asp. 537, 516–523 (2018).

    Article  CAS  Google Scholar 

  27. R. He, J. Zhou, H. Fu, S. Zhang, and C. Jiang, Room-temperature in situ fabrication of Bi2O3 /g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 430, 273–282 (2018).

    Article  CAS  Google Scholar 

  28. J. Liang, Y. Li, J. Zhang, C. Li, X. Yang, X. Chen, F. Wang, and C. Chen, Crystalline phase engineering in WO3/g-C3N4 composites for improved photocatalytic performance under visible light. Mater. Res. Express 7, 065503 (2020).

    Article  CAS  Google Scholar 

  29. V. Vo, X.D. Nguyen Thi, Y.-S. Jin, G. Ly Thi, T.T. Nguyen, T.Q. Duong, and S.-J. Kim, SnO2 nanosheets/g-C3N4 composite with improved lithium storage capabilities. Chem. Phys. Lett. 674, 42–47 (2017).

    Article  CAS  Google Scholar 

  30. SYu. Sokovnin, N. Pizurova, V.G. Ilves, P. Roupcová, M.G. Zuev, M.A. Uimin, M.V. Ulitko, and O.A. Svetlova, Properties of ZrO2 and Ag–ZrO2 nanopowders prepared by pulsed electron beam evaporation. Ceram. Int. 48, 17703–17713 (2022).

    Article  CAS  Google Scholar 

  31. M. Thakur, A. Vij, A. Kumar, B.H. Koo, F. Singh, and V.S. Rangra, Electronic structure and defect-induced luminescence study of phase-stabilized t-ZrO2 nanocrystals. Luminescence 38, 762–771 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. M. Thakur, A. Vij, F. Singh, and V.S. Rangra, Spectroscopic studies of metastable tetragonal ZrO2 nanocrystals. Spectrochim. Acta A Mol. Biomol. Spectrosc. 305, 123495 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. K. Shanmugam and R. Sahadevan, Bioceramics—an introductory overview, Fundamental Biomaterials: Ceramics. (Elsevier, 2018), pp. 1–46.

    Google Scholar 

  34. S. Reyes-López, Review of the synthesis, characterization and application of zirconia mixed metal oxide nanoparticles. (2018) https://doi.org/10.5281/zenodo.1403844

  35. G. Ahilandeswari and D. Arivuoli, Enhanced sunlight-driven photocatalytic activity in assembled ZrO2/g-C3N4 nanocomposite. J. Mater. Sci. Mater. Electron. 33, 23986–24002 (2022).

    Article  CAS  Google Scholar 

  36. Q. Zhang, W. Zhang, B. Liang, J. Liu, D. Lan, and M. Jiao, ZrO2/C3N4 nanocomposites: green solid-state grinding synthesis, characterization, and photocatalytic degradation of MB dye. J. Inorg. Organomet. Polym. Mater. 32, 4434–4440 (2022).

    Article  CAS  Google Scholar 

  37. J. Bauri and R.B. Choudhary, Thermal and electronic states of exfoliated gC3N4-based nanocomposite with ZrO2 nanoparticles as a robust emissive layer. Mater. Sci. Semicond. Process. 154, 107205 (2023).

    Article  CAS  Google Scholar 

  38. L. Wang, Y. Hou, S. Xiao, F. Bi, L. Zhao, Y. Li, X. Zhang, G. Gai, and X. Dong, One-step, high-yield synthesis of g-C3N4 nanosheets for enhanced visible light photocatalytic activity. RSC Adv. 9, 39304–39314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. X. Wang, X. Chen, A. Thomas, X. Fu, and M. Antonietti, Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv. Mater. 21, 1609–1612 (2009).

    Article  CAS  Google Scholar 

  40. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. L.R.B. Elton and D.F. Jackson, X-ray diffraction and the Bragg Law. Am. J. Phys. 34, 1036–1038 (1966).

    Article  CAS  Google Scholar 

  42. M. Ramachandran, R. Subadevi, W.-R. Liu, and M. Sivakumar, Facile synthesis and characterization of ZrO2 nanoparticles via modified Co-precipitation method. J. Nanosci. Nanotechnol. 18, 368–373 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. U. Holzwarth and N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation.’ Nat. Nanotechnol. 6, 534–534 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. K. Zhang, M. Zhou, C. Yu, K. Yang, X. Li, W. Dai, J. Guan, Q. Shu, and W. Huang, Construction of S-scheme g-C3N4/ZrO2 heterostructures for enhancing photocatalytic disposals of pollutants and electrocatalytic hydrogen evolution. Dyes Pigm. 180, 108525 (2020).

    Article  CAS  Google Scholar 

  45. T. Chen, W. Quan, L. Yu, Y. Hong, C. Song, M. Fan, L. Xiao, W. Gu, and W. Shi, One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts. J. Alloys Compd. 686, 628–634 (2016).

    Article  CAS  Google Scholar 

  46. R.S. Das, S.K. Warkhade, A. Kumar, and A.V. Wankhade, Graphene oxide-based zirconium oxide nanocomposite for enhanced visible light-driven photocatalytic activity. Res. Chem. Intermed. 45, 1689–1705 (2019).

    Article  CAS  Google Scholar 

  47. M. Ismael, Y. Wu, and M. Wark, Photocatalytic activity of ZrO2 composites with graphitic carbon nitride for hydrogen production under visible light. New J. Chem. 43, 4455–4462 (2019).

    Article  CAS  Google Scholar 

  48. N.S. Leel, M. Kiran, M.K. Kumawat, P.A. Alvi, V.S. Vats, D. Patidar, B. Dalela, S. Kumar, and S. Dalela, Oxygen vacancy driven luminescence, ferromagnetic and electronic structure properties of Eu doped CeO2 nanoparticles. J. Lumin. 263, 119981 (2023).

    Article  CAS  Google Scholar 

  49. P. Nagaraju, Y. V. Kumar, M. V. R. Reddy, C. V. Reddy, V. R. Reddy, D. M. Phase, and I.-I. UGC-DAE-CSR, Preparation, Micro structural characterization and Optical characterization of pure and Gd-doped ceria thin films. Int. J. Sci. Eng. Res. 5, 185–190 (2014).

    Google Scholar 

  50. W. Bousslama, H. Elhouichet, and M. Férid, Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Optik (Stuttg) 134, 88–98 (2017).

    Article  CAS  Google Scholar 

  51. J. Luo, X. Zhou, L. Ma, and X. Xu, Enhancing visible-light photocatalytic activity of g-C3N4 by doping phosphorus and coupling with CeO2 for the degradation of methyl orange under visible light irradiation. RSC Adv. 5, 68728–68735 (2015).

    Article  CAS  Google Scholar 

  52. J. Liang, Z. Deng, X. Jiang, F. Li, and Y. Li, Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg. Chem. 41, 3602–3604 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. K. Smits, D. Jankovica, A. Sarakovskis, and D. Millers, Up-conversion luminescence dependence on structure in zirconia nanocrystals. Opt. Mater. (Amst.) 35, 462–466 (2013).

    Article  CAS  Google Scholar 

  54. L.-R. Zou, G.-F. Huang, D.-F. Li, J.-H. Liu, A.-L. Pan, and W.-Q. Huang, A facile and rapid route for synthesis of g-C3N4 nanosheets with high adsorption capacity and photocatalytic activity. RSC Adv. 6, 86688–86694 (2016).

    Article  CAS  Google Scholar 

  55. P. Chen, P. Xing, Z. Chen, X. Hu, H. Lin, L. Zhao, and Y. He, In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H2 generation. J. Colloid Interface Sci. 534, 163–171 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. H.N. Ghosh and S. Adhikari, Trap state emission from TiO2 nanoparticles in microemulsion solutions. Langmuir 17, 4129–4130 (2001).

    Article  CAS  Google Scholar 

  57. X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett. 3, 1103–1106 (2003).

    Article  CAS  Google Scholar 

  58. M. Jones, J. Nedeljkovic, R.J. Ellingson, A.J. Nozik, and G. Rumbles, Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. J. Phys. Chem. B 107, 11346–11352 (2003).

    Article  CAS  Google Scholar 

  59. N.C. Horti, M.D. Kamatagi, S.K. Nataraj, M.N. Wari, and S.R. Inamdar, Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: effect of calcination temperature. Nano Express 1, 010022 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to UPES, Dehradun, for funding the seed grant and to the Central Instrumentation Centre, UPES, for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ankush Vij or Shalendra Kumar.

Ethics declarations

Conflict of interest

The authors declare that none of the work presented in this study may have been influenced by any known conflicting financial interests or relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasit, M., Vij, A., Kumar, R. et al. Investigation of the Structural and Optical Properties of g-C3N4/ZrO2 Nanocomposites. J. Electron. Mater. 53, 5904–5915 (2024). https://doi.org/10.1007/s11664-024-11070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11070-4

Keywords

Navigation