Skip to main content
Log in

Numerical Investigation of a Highly Efficient Hole Transport Layer-Free Solid-State Dye-Sensitized Solar Cell Based on N719 Dye

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Over the last few years, considerable efforts have been invested in designing solar cell modules that are envisaged to revolutionize photovoltaic technology towards clean and sustainable energy. Solid-state dye-sensitized solar cells (ssDSSCs) have gained considerable attention because of their robust light harvesting capabilities. Herein, we investigate the performance of a hole transport layer-free (HTL-free) ssDSSC architecture of the configuration ITO/PC61BM/N719 Dye/Ni HTL-free by device simulation using the solar cell capacitance simulator (SCAPS-1D). The results show viable power conversion efficiency (PCE) of 14.51%, coupled with an impressive fill factor (FF) of 84.58%, indicative of effective charge extraction mechanisms and minimal recombination losses within the device structure. Furthermore, the short-circuit current density (Jsc) and open-circuit voltage (Voc) attained remarkable values of 22.37 mA/cm2 and 0.7665 V, respectively. This work also found that the optimal defect density of the absorber was 1.0 × 1014 cm−3, whereas the optimal donor and acceptor densities were 1.0 × 1016 cm−3 and 1.0 × 1019 cm−3, respectively. These findings underscore the excellent light absorption, efficient charge generation, and good electron–hole separation at device interfaces. The findings of this work accentuate the promise of HTL-free ssDSSCs as high-performing solar cells characterized by simplified device architectures. The elimination of the HTL not only streamlines fabrication processes but also imparts cost efficiencies and enhances device stability. This study thus contributes invaluable insights to the advancement of efficient and commercially viable ssDSSCs, thereby inspiring progress towards a greener and more sustainable renewable energy landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data associated with the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Wrede, B. Cai, F. Cheng, M.B. Johansson, T. Kubart, C. Hägglund, and H. Tian, Solid-state pn tandem dye-sensitized solar cell. Sustain. 8, 1004 (2024).

    CAS  Google Scholar 

  2. M.F. Loucif Narimane, Study of perovskite based tandem solar cells, in Material Physics (University Mohamed Khider of Biskra, 2022).

  3. F.S. Khalkhali, E. Kowsari, S. Ramakrishna, M. Eqbalpour, M. Gheibi, and H. Esmaili, A review on the photosensitizers used for enhancing the photoelectrochemical performance of hydrogen production with emphasis on a novel toxicity assessment framework. Int. J. Hydrog. Energy 51, 990 (2023).

    Article  Google Scholar 

  4. R.I. Malarselvi, N. Nishanthi, R. Priscilla, C.R. Raja, K. Viswanathan, D. Ramachandran, New organic (Dye) Sensitized Solar Cells with ferric iron III oxide doped barium chromite (Fe2O3-BaCrO4). Mater. Today: Proc. (2023).

  5. A. Ebenezer Anitha and M. Dotter, A review on liquid electrolyte stability issues for commercialization of dye-sensitized solar cells (DSSC). Energies 16, 5129 (2023).

    Article  CAS  Google Scholar 

  6. S. Venkatesan, N.H.T. My, H. Teng, and Y.-L. Lee, Thin films of solid-state polymer electrolytes for dye-sensitized solar cells. J. Power. Sources 564, 232896 (2023).

    Article  CAS  Google Scholar 

  7. M.F. Loucif Narimane, Study of perovskite based tandem solar cells.

  8. K. Zeng, Z. Tong, L. Ma, W.-H. Zhu, W. Wu, and Y. Xie, Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells. Energy Environ. Sci. 13, 1617 (2020).

    Article  Google Scholar 

  9. S. Peiris, R. Ranatunga, I.R. Perera, p-Type Dye Sensitized Solar Cells: An Overview of Factors Limiting Efficiency. Solar Energy: Systems, Challenges, and Opportunities, 315 (2020).

  10. I. Benesperi, R. Singh, and M. Freitag, Copper coordination complexes for energy-relevant applications. Energies 13, 2198 (2020).

    Article  CAS  Google Scholar 

  11. A.K. Mohammad, A. Garrd, and A. Ghosh, Do Building integrated photovoltaic (BIPV) windows propose a promising solution for the transition toward zero energy buildings? A review. J. Build. Eng. 79, 107950 (2023).

    Article  Google Scholar 

  12. J. Kong, Y. Dong, A. Poshnath, B. Rismanchi, and P.-S. Yap, Application of building integrated photovoltaic (BIPV) in net-zero energy buildings (NZEBs). Energies 16, 6401 (2023).

    Article  Google Scholar 

  13. M.S. Mir, B.G. Guzman, A. Varshney, D. Giustiniano, LiFi for low-power and long-range RF backscatter. IEEE/ACM Trans. Netw. 1 (2023).

  14. J. Laninga, A. Nasr Esfahani, G. Ediriweera, N. Jacob, and B. Kordi, Monitoring technologies for HVDC transmission lines. Energies 16, 5085 (2023).

    Article  Google Scholar 

  15. B. Kruft, A techno-economic analysis of space-based solar power systems. J. Manag. Sci. 8, 732 (2023).

    Google Scholar 

  16. N.I.A. Shukor, K.-Y. Chan, G.S.H. Thien, M.-E. Yeoh, P.-L. Low, N.K. Devaraj, Z.-N. Ng, and B.K. Yap, A green approach to natural dyes in dye-sensitized solar cells. Sensors. 23, 8412 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Rahman, A. Haleem, M. Siddiq, M.K. Hussain, S. Qamar, S. Hameed, and M. Waris, Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Adv. 13, 19508 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. P. Subudhi and D. Punetha, Progress, challenges, and perspectives on polymer substrates for emerging flexible solar cells: a holistic panoramic review. Prog. Photovolt.: Res. Appl. 31, 753 (2023).

    Article  CAS  Google Scholar 

  19. R. Dallaev, T. Pisarenko, N. Papež, and V. Holcman, Overview of the current state of flexible solar panels and photovoltaic materials. Materials. 16, 5839 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Ghorbani, S.E. Zhang, G.T. Nwaila, J.E. Bourdeau, and D.H. Rose, Embracing a diverse approach to a globally inclusive green energy transition: Moving beyond decarbonisation and recognising realistic carbon reduction strategies. J. Clean. Prod. 434, 140414 (2023).

    Article  Google Scholar 

  21. Sarika, A. Anand, R. Meena, U. Mina, A. Shukla, A. Sharma, Adoption of the green energy technology for the mitigation of greenhouse gas emission: Embracing the goals of the Paris agreement, in Nanomaterials and Nanoliquids: Applications in Energy and Environment (Springer, 2023), p. 47.

  22. S.H.B. Motlagh, S.A. Hosseini, and O. Pons-Valladares, Integrated value model for sustainability assessment of residential solar energy systems towards minimizing urban air pollution in Tehran. Sol. Energy 249, 40 (2023).

    Article  Google Scholar 

  23. S. Mukhopadhyay, Solar energy and gasification of MSW: two promising green energy options, in Green Energy Systems (Elsevier, 2023), p. 93.

  24. T.Q. Donaghy, N. Healy, C.Y. Jiang, and C.P. Battle, Fossil fuel racism in the United States: How phasing out coal, oil, and gas can protect communities. Res. Soc. Sci. 100, 103104 (2023).

    Google Scholar 

  25. B. Lin and S. Ullah, Effectiveness of energy depletion, green growth, and technological cooperation grants on CO2 emissions in Pakistan’s perspective. Sci. Total. Environ. 906, 167536 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. O.J. Olujobi, U.E. Okorie, E.S. Olarinde, and A.D. Aina-Pelemo, Legal responses to energy security and sustainability in Nigeria’s power sector amidst fossil fuel disruptions and low carbon energy transition. Heliyon. 9, e17912 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. S. Kunskaja, J.F. Bauer, A. Budzyński, and I.-C. Jitea, A research analysis: The implementation of innovative energy technologies and their alignment with SDG 12. East.-Eur. J. Enterp. Technol. 125, 6 (2023).

    Google Scholar 

  28. H. Abedini-Ahangarkola, S. Soleimani-Amiri, and S. Gholami Rudi, Modeling and numerical simulation of high efficiency perovskite solar cell with three active layers. Sol. Energy 236, 724 (2022).

    Article  CAS  Google Scholar 

  29. K.J. Hong, S.T. Tan, K.-K. Chong, C.C. Yap, M.H. Hj Jumali, and Y.-L. Loo, Numerical analysis with experimental verification to predict outdoor power conversion efficiency of inverted organic solar devices. Renew. Energy 135, 589 (2019).

    Article  CAS  Google Scholar 

  30. E. Supriyanto, H.A. Kartikasari, N. Alviati, and G. Wiranto, Simulation of dye-sensitized solar cells (DSSC) performance for various local natural dye photosensitizers. IOP Conf. Ser.: Mater. Sci. Eng. 515, 012048 (2019).

    Article  CAS  Google Scholar 

  31. F. Belarbi, W. Rahal, D. Rached, S. Benghabrit, and M. Adnane, A comparative study of different buffer layers for CZTS solar cell using Scaps-1D simulation program. Optik 216, 164743 (2020).

    Article  CAS  Google Scholar 

  32. S. Michael, A. Bates, M. Green. Silvaco ATLAS as a solar cell modeling tool, in Conf. Rec. IEEE Photovolt. Spec. Conf. (IEEE, 2005).

  33. R. MacKenzie, General-purpose Photovoltaic Device Model—gpvdm (2021).

  34. M.I. Hossain, F.H. Alharbi, N. Amin, N. Tabet. Numerical analysis of hybrid perovskite solar cells using inorganic hole conducting material, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (IEEE, 2015).

  35. B.K. Korir, J.K. Kibet, and S.M. Ngari, Computational simulation of a highly efficient hole transport-free dye-sensitized solar cell based on titanium oxide (TiO2) and zinc oxysulfide (ZnOS) electron transport layers. J. Electron. Mater. 50, 7259 (2021).

    Article  CAS  Google Scholar 

  36. G.A. Nowsherwan, M.A. Iqbal, S.U. Rehman, A. Zaib, M.I. Sadiq, M.A. Dogar, M. Azhar, S.S. Maidin, S.S. Hussain, and K. Morsy, Numerical optimization and performance evaluation of ZnPC: PC70BM based dye-sensitized solar cell. Sci. Rep. 13, 10431 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. B.K. Korir, J.K. Kibet, and S.M. Ngari, Simulated performance of a novel solid-state dye-sensitized solar cell based on phenyl-C 61-butyric acid methyl ester (PC 61 BM) electron transport layer. Opt. Quant. Electron. 53, 1 (2021).

    Article  Google Scholar 

  38. M.K. Hossain, M.K. Mohammed, R. Pandey, A. Arnab, M. Rubel, K. Hossain, M.H. Ali, M.F. Rahman, H. Bencherif, and J. Madan, Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 perovskite solar cells. Energy Fuels 37, 6078 (2023).

    Article  CAS  Google Scholar 

  39. R.A. Zargar, M.I. Khan, Y. Arfat, V. Kumar, J. Singh, Basic physics and design of photovoltaic devices. Metal oxide nanocomposite thin films for optoelectronic device applications, 221 (2023).

  40. Y. Ahmadi and K.-H. Kim, Modification strategies for visible-light photocatalysts and their performance-enhancing effects on photocatalytic degradation of volatile organic compounds. Renewable Sustainable Energy Rev. 189, 113948 (2024).

    Article  CAS  Google Scholar 

  41. P. Chauhan, S. Agarwal, V. Srivastava, S. Maurya, M.K. Hossain, J. Madan, R.K. Yadav, P. Lohia, D.K. Dwivedi, and A.A. Alothman, Impact on generation and recombination rate in Cu2ZnSnS4 (CZTS) solar cell for Ag2S and In2Se3 buffer layers with CuSbS2 back surface field layer. Prog. Photovolt. Res. Appl. 32, 156 (2023).

    Article  Google Scholar 

  42. X. Ma, W. Xu, Z. Liu, S.Y. Jeong, C. Xu, J. Zhang, H.Y. Woo, Z. Zhou, and F. Zhang, Over 18.1% efficiency of layer-by-layer polymer solar cells by enhancing exciton utilization near the ITO electrode. ACS Appl. Mater. Interfaces 15, 7247 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. W. Wang, Y. Cui, T. Zhang, P. Bi, J. Wang, S. Yang, J. Wang, S. Zhang, and J. Hou, High-performance organic photovoltaic cells under indoor lighting enabled by suppressing energetic disorders. Joule. 7, 1067 (2023).

    Article  CAS  Google Scholar 

  44. J. Castillo-Rodriguez, P.D. Ortiz, R. Mahmood, R.A. Gossage, J. Llanos, D. Espinoza, X. Zarate, B.D. Koivisto, and E. Schott, The development of Au-titania photoanode composites toward semiflexible dye-sensitized solar cells. Sol. Energy 263, 111955 (2023).

    Article  CAS  Google Scholar 

  45. D. Thakur, C. Porwal, V.S. Chauhan, V. Balakrishnan, and R. Vaish, 2D transition metal dichalcogenides: Synthesis methods and their pivotal role in photo, piezo, and photo-piezocatalytic processes. Sep. Purif. Technol. 337, 126462 (2024).

    Article  CAS  Google Scholar 

  46. R. Lawrence, Development and Research Into Visible Light Photocatalysts and the Photocatalytic Mechanism (University of Toronto, Canada, 2023).

  47. J. Martins, M. Pereira, S. Emami, D. Ivanou, and A. Mendes, Decal Ni mesh to enhance the conductivity of carbon back contacts in dye sensitized and perovskite solar cells. Energy Adv. 3, 307 (2024).

    Article  CAS  Google Scholar 

  48. M.R.A. Bhuiyan, S. Sikder, R. Hosen, M.S. Uddin, M.M. Haque, H. Mamur, Influence of different layers on enhancing the PV performance of Al/Zno/Znmno/Cigsse/Cu2O/Ni solar cells. Zno/Znmno/Cigsse/Cu2O/Ni Solar Cells (2023).

  49. O.V. Aliyaselvam, S.M. Junos, F. Arith, N. Izlan, M.M. Said, and A.N. Mustafa, Optimization of copper (i) thiocyanate as hole transport material for solar cell by SCAPS-1D numerical analysis. Prz. Elektrotech. 98, 133 (2022).

    Article  Google Scholar 

  50. U. Mandadapu, S.V. Vedanayakam, and K. Thyagarajan, Simulation and analysis of lead based perovskite solar cell using SCAPS-1D. Indian J. Sci. Technol. 10, 65 (2017).

    Article  Google Scholar 

  51. Uu. Rehman, N. Almousa, Ku. Sahar, A. Ashfaq, K. Mahmood, E.A. Shokralla, M.S. Al-Buriahi, Z.A. Alrowaili, R.Y. Capangpangan, and A.C. Alguno, Optimizing the efficiency of lead-free Cs2TiI6-based double halide perovskite solar cells using SCAPS-1D. Energy Technol. 11, 2300459 (2023).

    Article  CAS  Google Scholar 

  52. H.T. Ganem, A.N. Saleh, Enhancement of the efficiency of the CZTS/CdS/ZnO/ITO solar cell by back reflection and buffer layers using SCAPS-1D. Iraqi J. Sci. 1144 (2021).

  53. S. Tahir, A. Ashfaq, S. Mushtaq, M. Haneef, R. Saleh Alqurashi, E. Ali Shokralla, M.M. Sabugaa, R.S. Almufarij, Uu. Rehman, and R.S. Bonilla, Performance optimization of inorganic Cs2TiBr6 based perovskite solar cell via numerical simulation. Energy Technol. 11, 2300359 (2023).

    Article  CAS  Google Scholar 

  54. Z. Li, X. Kong, Y. Liu, H. Qiu, L. Zhan, and S. Yin, Progress of additives for morphology control in organic photovoltaics. Chin. Chem. Lett. 35, 109378 (2023).

    Article  Google Scholar 

  55. P. Patil, A. Maibam, S.S. Sangale, D.S. Mann, H.-J. Lee, S. Krishnamurty, S.-N. Kwon, and S.-I. Na, Chemical bridge-mediated heterojunction electron transport layers enable efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 15, 29597 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. G.A. Nowsherwan, N. Nowsherwan, N. Anwar, M. Ahmed, Y. Usman, F. Amin, N. Nowsherwan, S. Ikram, S. Irfan, and M. Umar, Performance evaluation of modified zinc-phthalocyanine groups as an active material in dye-sensitized solar cells. Energies 16, 7730 (2023).

    Article  CAS  Google Scholar 

  57. B. Yadagiri, A. Kumar Kaliamurthy, K. Yoo, H. Cheol Kang, J. Ryu, F. Kwaku Asiam, J.J. Lee, Molecular engineering of photosensitizers for solid‐state dye‐sensitized solar cells: Recent developments and perspectives. ChemistryOpen. 12, e202300170 (2023).

  58. D.R. Santos, S. Shukla, and B. Vermang, Prospects of copper-bismuth chalcogenide absorbers for photovoltaics and photoelectrocatalysis. J. Mater. Chem. A. 11, 22087 (2023).

    Article  CAS  Google Scholar 

  59. Y. Zheng, Q. Ruan, J. Ren, X. Guo, Y. Zhou, B. Zhou, Q. Xu, Q. Fu, S. Wang, and Y. Huang, Plasma-assisted liquid-based growth of g-C3N4/Mn2O3 pn heterojunction with tunable valence band for photoelectrochemical application. Appl. Catal. B Environ. 323, 122170 (2023).

    Article  CAS  Google Scholar 

  60. Y. Lee, M. Buraidah, L. Teo, Quantum dots synthesis for photovoltaic cells, in Quantum Dots (Elsevier, 2023), p. 67.

  61. N. Kumar, S. Lenita, G. Parvathi, I.R. Rupa, M. Shafreen, M. Danish, Developments of nanocomposites in dye-sensitized solar cells, in Nanocomposites-Advanced Materials for Energy and Environmental Aspects (Elsevier, 2023), p. 225.

  62. S. Hema, M. Sajith, K.R. Sulthan, C. Sreelekshmi, S. Sambhudevan, Polymer blend nanocomposites for solar cell applications, in Polymer Blend Nanocomposites for Energy Storage Applications. (Elsevier, 2023), p. 495.

  63. M. Agoundedemba, M. Baneto, R. Nyenge, N. Musila, K.J.-Y.N.Z. Toure, Improving FTO/ZnO/In2S3/CuInS2/Mo solar cell efficiency by optimizing thickness and carrier concentrations of ZnO, In2S3 and CuInS2 thin films using Silvaco-Atlas Software. (2023).

  64. A. Soosairaj, D.P. Pabba, A. Gunasekaran, S. Anandan, J. Selvaraj, and L.R. Asirvatham, Synergetic impact of natural light harvesting materials to reduce the recombination rate and improve the device performance of dye sensitized solar cells. J. Mater. Sci. Mater. Electron. 34, 1748 (2023).

    Article  CAS  Google Scholar 

  65. L. Serenelli, L. Martini, F. Menchini, M. Izzi, and M. Tucci, Open circuit voltage reduction due to recombination at the heterojunction solar cell edge. Sol. Energy 258, 2 (2023).

    Article  CAS  Google Scholar 

  66. R. Raman, B. Natarajan, S. Anandan, S. Kamalakannan, and M. Prakash, Effect of end groups on fluorene based dyes without carboxyl anchors as efficient co-sensitizer for retarding charge recombination in DSSC applications. Opt. Mater. 134, 113159 (2022).

    Article  CAS  Google Scholar 

  67. K. Wang, C. Guo, Z. Li, R. Zhang, Z. Feng, G. Fang, D. Huang, J. Liang, L. Zhao, and Z. Li, Machine learning assisted identification of the matched energy level of materials for high open circuit voltage in binary organic solar cells. Mol. Syst. Des. Eng. 8, 799 (2023).

    Article  CAS  Google Scholar 

  68. M.S. Reza, M.F. Rahman, A. Kuddus, M.K. Mohammed, A.K. Al-Mousoi, M.R. Islam, A. Ghosh, S. Bhattarai, R. Pandey, and J. Madan, Boosting efficiency above 28% using effective charge transport layer with Sr3SbI3 based novel inorganic perovskite. RSC Adv. 13, 31330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. M.K. Hossain, S. Bhattarai, A. Arnab, M.K. Mohammed, R. Pandey, M.H. Ali, M.F. Rahman, M.R. Islam, D. Samajdar, and J. Madan, Harnessing the potential of CsPbBr 3-based perovskite solar cells using efficient charge transport materials and global optimization. RSC Adv. 13, 21044 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. J.P.F. Assunção, H.G. Lemos, J.H. Rossato, G.L. Nogueira, J.V. Lima, S.L. Fernandes, R.K. Nishihora, R.V. Fernandes, S.A. Lourenço, and D. Bagnis, Interface passivation with Ti3C2Tx-MXene doped PMMA film for highly efficient and stable inverted perovskite solar cells. J. Mater. Chem. C. 12, 562 (2024).

    Article  Google Scholar 

  71. N. Rono, An experimental study of graphitic carbon nitride-based materials and selected metal-based semiconductors in organic solar cells combined with a computational study of perovskite solar cells, in School of Chemistry and Physics (University of KwaZulu-Natal, 2023), p. 376.

  72. N. El Ouarie, J. El Hamdaoui, G. Sahoo, K. Rodriguez-Osorio, M. Courel, M. Zazoui, L. Pérez, D. Laroze, and E. Feddi, Modeling of highly efficient CNGS based kesterite solar cell: A DFT study along with SCAPS-1D analysis. Sol. Energy 263, 111929 (2023).

    Article  Google Scholar 

  73. I. Qasim and M.I. Malik, Simulations and suitability study of inorganic Cu-Based Hole-Transport Layers In Planar CH3NH3SnI3-based perovskite solar cell and module. Energy Technol. 11, 2300471 (2023).

    Article  CAS  Google Scholar 

  74. G. Qin, P. Lin, X. Sun, J. Guo, J. Fan, L. Ji, H. Li, and A. Ren, Theoretically seeking charge transport materials with inherent mobility higher than 2, 6-diphenyl anthracene: Three isomers of 2, 6-dipyridyl anthracene. Phys. Chem. Chem. 25, 540 (2023).

    Article  CAS  Google Scholar 

  75. S. Mohtaram, M.S. Mohtaram, S. Sabbaghi, X. You, W. Wu, and N. Golsanami, Enhancement strategies in CO2 conversion and management of biochar supported photocatalyst for effective generation of renewable and sustainable solar energy. Energy Convers. Manag. 300, 117987 (2024).

    Article  CAS  Google Scholar 

  76. A. Kumar, D. Kumar, N. Jain, M. Kumar, G. Ghodake, S. Kumar, R.K. Sharma, J. Holovsky, V.S. Saji, and S.K. Sharma, Enhanced efficiency and stability of electron transport layer in perovskite tandem solar cells: Challenges and future perspectives. Sol. Energy 266, 112185 (2023).

    Article  CAS  Google Scholar 

  77. M. Sotoudeh, S. Baumgart, M. Dillenz, J. Döhn, K. Forster-Tonigold, K. Helmbrecht, D. Stottmeister, and A. Groß, Ion mobility in crystalline battery materials. Adv. Energy Mater. 14, 2302550 (2024).

    Article  CAS  Google Scholar 

  78. S. Lal, M. Righetto, A.M. Ulatowski, S.G. Motti, Z. Sun, J.L. MacManus-Driscoll, R.L. Hoye, and L.M. Herz, Bandlike transport and charge-carrier dynamics in BiOI films. J. Phys. Chem. Lett. 14, 6620 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. L. Deng, Y. Liu, Y. Zhang, S. Wang, and P. Gao, Organic thermoelectric materials: Niche harvester of thermal energy. Adv. Funct. Mater. 33, 2210770 (2023).

    Article  CAS  Google Scholar 

  80. K.W. Böer, U.W. Pohl, Carrier scattering at low electric fields, in Semiconductor Physics (Springer, 2023), p. 985.

  81. P. Dixit, S.S. Jana, T. Maiti, Enhanced thermoelectric performance of rare‐earth‐free n‐type oxide perovskite composite with graphene analogous 2D MXene. Small 2206710 (2023).

  82. A. Stankevych, R. Saxena, A. Vakhnin, F. May, N. Kinaret, D. Andrienko, J. Genoe, H. Bässler, A. Köhler, and A. Kadashchuk, Monitoring the charge-carrier-occupied density of states in disordered organic semiconductors under nonequilibrium conditions using thermally stimulated luminescence spectroscopy. Phys. Rev. Appl. 19, 054007 (2023).

    Article  CAS  Google Scholar 

  83. H. Asghar, T. Riaz, H.A. Mannan, S.M. Khan, and O.M. Butt, Rheology and modeling insights into dye-sensitized solar cells (DSSCs) material: Bridging the gap to solar energy advancements. Renewable Sustainable Energy Rev. 193, 114298 (2024).

    Article  CAS  Google Scholar 

  84. S.Y. Kim, C.C. Kumachang, N.Y. Doumon, Characterization tools to probe degradation mechanisms in organic and perovskite solar cells. Solar RRL. 7 (2023).

  85. Y. Zhao, J. Zhao, X. Chen, M. Cathelinaud, S. Chen, H. Ma, P. Fan, X. Zhang, Z. Su, and G. Liang, Suppressing surface and bulk effect enables high efficiency solution-processed kesterite solar cells. J. Chem. Eng. 479, 147739 (2024).

    Article  CAS  Google Scholar 

  86. Y. Yang, Y. Xiao, B. Xu, and J. Hou, Cross-linkable cathode interlayer for inverted organic solar cells with enhanced efficiency and stability. Adv. Energy Mater. 13, 2301098 (2023).

    Article  CAS  Google Scholar 

  87. E. Ghahremanirad, O. Almora, S. Suresh, A.A. Drew, T.H. Chowdhury, and A.R. Uhl, Beyond protocols: Understanding the electrical behavior of perovskite solar cells by impedance spectroscopy. Adv. Energy Mater. 13, 2204370 (2023).

    Article  CAS  Google Scholar 

  88. S. Kansara, H. Kang, S. Ryu, H.H. Sun, and J.-Y. Hwang, Basic guidelines of the first− principles calculations for suitable selection of electrochemical Li storage materials: A review. J. Mater. Chem. C 11, 24482 (2023).

    CAS  Google Scholar 

  89. N.A.S. Abdul Jalil, E. Aboelazm, C.S. Khe, G.A. Ali, K.F. Chong, C.W. Lai, and K.Y. You, Enhancing capacitive performance of magnetite-reduced graphene oxide nanocomposites through magnetic field-assisted ion migration. PLoS ONE 19, e0292737 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. A. Graule, F. Oehler, J. Schmitt, J. Li, and A. Jossen, Development and evaluation of a physicochemical equivalent circuit model for lithium-ion batteries. J. Electrochem. Soc. 171, 020503 (2024).

    Article  Google Scholar 

  91. T.D.C. Busarello, M.G. Simões, J.A. Pomilio, Semiconductor diodes and transistors, in Power Electronics Handbook (Elsevier, 2024), p. 17.

  92. J.P.A. dos Santos, F.C. Rufino, J.I.Y. Ota, R.C. Fernandes, R. Vicentini, C.J. Pagan, L.M. Da Silva, H. Zanin, Best practices for electrochemical characterization of supercapacitors. J. Energy Chem. (2023).

  93. S. Cruz-Manzo and I. Martínez-Zárate, Analytical transfer function for the simulation of the frequency-domain and time-domain responses of the blocked-diffusion Warburg impedance. J. Energy Storage. 72, 108676 (2023).

    Article  Google Scholar 

  94. C. Igci, Molecularly engineered functional materials for high performance perovskite solar cells. 2022, EPFL.

  95. J.H. Scofield, Effects of series resistance and inductance on solar cell admittance measurements. Sol. Energy Mater. 37, 217 (1995).

    Article  CAS  Google Scholar 

  96. K. Aly and Y. Saddeek, Optical red shift spectra in CuxGe32S68-x films for infrared and solar cell window applications. Surf. Interfaces. 44, 103784 (2024).

    Article  CAS  Google Scholar 

  97. A. Verma, P. Chaudhary, A. Singh, R.K. Tripathi, B.C. Yadav, and P. Chauhan, Photomultiplicative and high external quantum efficient energy conversion device for paper electronics. ACS Appl. Electron. Mater. 5, 4899 (2023).

    Article  CAS  Google Scholar 

  98. J. Thirumalai, Quantum Dots: Recent Advances, New Perspectives and Contemporary Applications (London: IntechOpen limited, 2023).

    Book  Google Scholar 

  99. E. Ochoa-Martinez, S. Bijani-Chiquero, Md.V. Martínez de Yuso, S. Sarkar, H. Diaz-Perez, R. Mejia-Castellanos, F. Eickemeyer, M. Grätzel, U. Steiner, and J.V. Milić, Nanocrystalline flash annealed nickel oxide for large area perovskite solar cells. Adv. Sci. 10, 2302549 (2023).

    Article  CAS  Google Scholar 

  100. P. Subudhi and D. Punetha, Progress, challenges, and perspectives on polymer substrates for emerging flexible solar cells: A holistic panoramic review. Prog. Photovoltaics Res. Appl. 31, 753 (2023).

    Article  CAS  Google Scholar 

  101. T.-C. Ong, M. Sarvghad, S. Bell, G. Will, T.A. Steinberg, Y. Yin, G. Andersson, and D. Lewis, Review on the challenges of salt phase change materials for energy storage in concentrated solar power facilities. Appl. Therm. Eng. 238, 122034 (2023).

    Article  Google Scholar 

  102. J.A. Abarca, G. Díaz-Sainz, I. Merino-Garcia, A. Irabien, J. Albo, Photoelectrochemical CO2 electrolyzers: From photoelectrode fabrication to reactor configuration. J. Energy Chem. (2023).

  103. M.-H. Lee, Frontier molecular orbital offset as an empirical descriptor for predicting short circuit current of nonfullerene organic solar cells. Sol. RRL. 7, 2300533 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Directorate of Research and Extension, Egerton University, Njoro campus, and Govan Mbeki Research and Development Centre (GMRDC) at the University of Fort Hare for supporting this study. Finally, the authors are also grateful to Professor Marc Burgelman and his team at the University of Ghent for allowing us to make use of the SCAPS-1D software.

Funding

This study received no specific grants from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

GGN: Numerical analysis, Writing and editing, JKK: Conceptualization & Editing and Supervision, NR: Method development and Editing, ELM: Method development & Editing. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Joshua K. Kibet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Statement

Not applicable.

Consent for Publication

This article has the consent of all the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njema, G.G., Kibet, J.K., Rono, N. et al. Numerical Investigation of a Highly Efficient Hole Transport Layer-Free Solid-State Dye-Sensitized Solar Cell Based on N719 Dye. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11068-y

Keywords

Navigation