Skip to main content
Log in

Tunable Broadband TiO2@TiC Composites by In Situ Surface Oxidation for Electromagnetic Wave Absorption

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Titanium carbide (TiC) exhibits excellent chemical stability and high electrical conductivity, making it suitable for composites with unique structures and exceptional absorption abilities. In this work, TiO2@TiC composites with varied morphology were synthesized by oxidizing TiC at 400°C, for various durations. With the increase of oxidation time, small white TiO2 particles grew in situ on the surface of TiC particles, ultimately leading to the formation of a continuous structure in which TiO2 covered the surface of the TiC particles. These results indicate that the impedance matching and electromagnetic wave (EMW) absorption properties of TiO2@TiC composites can be modified by adjusting the oxidation time. The minimum reflection loss (RLmin) of the highly oxidized TiO2@TiC composite (TO-4 sample) reached −16.2 dB at a thickness of 2.9 mm. When the thickness was increased from 1.2 mm to 4.7 mm, the composites achieved the broadest effective absorption bandwidth of 13 GHz (from 5 to 18 GHz). These enhanced EMW absorption properties can be ascribed to the presence of defects, pores, heterointerfaces, TiO2, and TiC within the composites, which induce dipole polarization loss, interface polarization loss, and conduction loss. This practical solution provides a method for preparing TiO2@TiC materials with EMW-absorbing properties using oxidation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Chang, Q. Li, Z. Jia, W. Zhao, and G. Wu, Tuning microwave absorption properties of Ti3C2Tx MXene-based materials: component optimization and structure modulation. J. Mater. Sci. Technol. 148, 150 (2023).

    Article  CAS  Google Scholar 

  2. B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen, M. Yuan, L. Yang, J. Zhang, and R. Che, Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33, 2209924 (2023).

    Article  CAS  Google Scholar 

  3. Y. Feng, P. Wu, J. Xu, S. Zhu, S. Tian, C. Liu, Q. Liu, and X. Kong, Nanoholes in carbon sheets via air-controlled annealing for improved microwave absorption. ACS Appl. Nano Mater. 6, 13593–13603 (2023).

    Article  Google Scholar 

  4. H. Wei, Y. Yu, F. Jiang, J. Xue, F. Zhao, and Q. Wang, Carbon@SiC(SiCnws)-Sc2Si2O7 ceramics with multiple loss mediums for improving electromagnetic shielding performance. J. Eur. Ceram. Soc. 42, 2274–2281 (2022).

    Article  CAS  Google Scholar 

  5. Y. Zhou, B. Zhao, H. Chen, H. Xiang, F.Z. Dai, S. Wu, and W. Xu, Electromagnetic wave absorbing properties of TMCs (TM = Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2) C. J. Mater. Sci. Technol. 74, 105 (2021).

    Article  CAS  Google Scholar 

  6. S.P. Buyakova, E.S. Dedova, D. Wang, Y.A. Mirovoy, A.G. Burlachenko, and A.S. Buyakov, Phase evolution during entropic stabilization of ZrC, NbC, HfC, and TiC. Ceram. Int. 48, 11747 (2022).

    Article  CAS  Google Scholar 

  7. X. Liu, H. Xu, F. Xie, X. Yin, and R. Riedel, Light-weight and highly flexible TaC modified PyC fiber fabrics derived from cotton fiber textile with excellent electromagnetic shielding effectiveness. Chem. Eng. J. 387, 124085 (2020).

    Article  CAS  Google Scholar 

  8. N. Yang, S. Xu, D. Zhang, and C. Xu, Super-wideband electromagnetic absorbing TiC/SiOC ceramic/glass composites derived from polysiloxane and titanium isopropoxide with low thickness (< 1 mm). Adv. Eng. Mater. 25, 2201508 (2023).

    Article  CAS  Google Scholar 

  9. C. Wang, H. Wang, J. Wu, H. Wei, and J. Xue, Enhanced electromagnetic wave absorption performance of multiphase (TiC/TiO2/C)/SiOC composites with unique microstructures. Mater Charact 203, 113131 (2023).

    Article  CAS  Google Scholar 

  10. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, and H. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3, 15000286 (2016).

    Article  Google Scholar 

  11. H. Wei, S. Yang, P. Feng, C. Zhou, J. Xue, C. Wang, L. Chen, F. Zhao, and Q. Wang, Optimization of Ti with modified SiC ceramics for electromagnetic absorption properties. Mater. Charact. 198, 112761 (2023).

    Article  CAS  Google Scholar 

  12. H. Wang, D. Zhu, W. Zhou, and F. Luo, Elecromagnetic and microwave absorption properties of the carbonyl iron/TiC hybrid powders in the X band. Int. J. Magnet. Electromagn. 2, 005 (2016).

    Article  Google Scholar 

  13. Y. Wang, F. Luo, W. Zhou, and D. Zhu, Dielectric and electromagnetic wave absorbing properties of TiC/epoxy composites in the GHz range. Ceram. Int. 40, 10749 (2014).

    Article  CAS  Google Scholar 

  14. X. Yuan, L. Cheng, and L. Zhang, Influence of temperature on dielectric properties and microwave absorbing performances of TiC nanowires/SiO2 composites. Ceram. Int. 40, 15391 (2014).

    Article  CAS  Google Scholar 

  15. H. Wei, S. Yang, P. Feng, J. Xue, F. Zhao, and Q. Wang, Construction of Si3N4/SiO2/SiC–Y2Si2O7 composite ceramics with gradual impedance matching structure for high-temperature electromagnetic wave absorption. Ceram. Int. 48, 584 (2022).

    Google Scholar 

  16. J. Xiao, X. Qi, X. Gong, Q. Peng, Y. Chen, R. Xie, and W. Zhong, Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 139, 137 (2023).

    Article  CAS  Google Scholar 

  17. H. Wei, J. Liu, P. Feng, S. Yang, J. Xue, C. Wang, F. Zhao, and Q. Wang, Design of multilayer cauliflower-like structure SiO2/SiC–Y2Si2O7 composite ceramics as high-efficiency electromagnetic wave absorbers. Ceram. Int. 48, 33635 (2022).

    Article  CAS  Google Scholar 

  18. Y. Zhou, J. Muhammad, T. Zhou, D. Wang, X. Wang, Y. Duan, X. Zhang, X. Dong, and Z. Zhang, Incorporation of magnetic component to construct (TiC/Ni)@C ternary composite with heterogeneous interface for enhanced microwave absorption. J. Alloy. Compd. 778, 779 (2019).

    Article  CAS  Google Scholar 

  19. A.-A. El Mel, B. Angleraud, E. Gautron, A. Granier, and P. Tessier, XPS study of the surface composition modification of nc-TiC/C nanocomposite films under in situ argon ion bombardment. Thin Solid Films 519, 3982 (2011).

    Article  Google Scholar 

  20. Y. Jia, T.D. Ajayi, M.A. Roberts Jr., C. Chung, and C. Xu, Ultrahigh-temperature ceramic–polymer-derived SiOC ceramic composites for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 46254 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. B. Luo, H. Zhou, D. Liu, F. Luo, Y. Tian, D. Chen, and W. Wei, One-step in-situ reaction synthesis of TiC/graphene composite thin film for titanium foil surface reinforcement. Vacuum 160, 472 (2019).

    Article  CAS  Google Scholar 

  22. E.M. Samsudin, S.B. Abd Hamid, J.C. Juan, and W.J. Basirun, Influence of triblock copolymer (pluronic F127) on enhancing the physico-chemical properties and photocatalytic response of mesoporous TiO2. Appl. Surf. Sci. 355, 959 (2015).

    Article  CAS  Google Scholar 

  23. H. Wei, Y. Yu, P. Feng, J. Xue, J. Pan, F. Zhao, and Q. Wang, Controllable synthesis of ScFeO3 ceramics with microstructural evolution for thin and broadband high-performance microwave absorption. J. Alloy. Compd. 925, 166826 (2022).

    Article  CAS  Google Scholar 

  24. H. Wei, C. Zhou, P. Feng, Y. Yu, J. Xue, F. Zhao, and Q. Wang, Rear earth (Re: Sc, Y, and Ce) modified PDCs-SiC ceramics for efficient microwave absorption. Mater. Charact. 190, 112048 (2022).

    Article  CAS  Google Scholar 

  25. Y. Wang, R. Cheng, W.G. Cui, Z. Lu, Y. Yang, H. Pan, and R. Che, Heterostructure design of 3D hydrangea-like Fe3O4/Fe7S8@C core-shell composite as a high-efficiency microwave absorber. Carbon 210, 118043 (2023).

    Article  CAS  Google Scholar 

  26. S.H. Ahmad, M.H. Abdullah, D. Hui, A.N. Yusoff, and D. Puryanti, Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. J. Magn. Magn. Mater. 322, 3401 (2010).

    Article  Google Scholar 

  27. H. Wei, C. Zhou, P. Feng, J. Xue, F. Zhao, and Q. Wang, In-situ grown CNTs decorated SiCNWs for enhancing electromagnetic wave absorption efficiency. J. Hazard. Mater. Adv. 6, 100079 (2022).

    Article  CAS  Google Scholar 

  28. S. Yang, L. Tang, H. Wei, J. Xue, Z. Wang, Q. Wang, and F. Zhao, In-situ construction of volcanic rock-like structures in Yb2O3 modified reduced graphene oxide and their boosted electromagnetic wave absorbing properties. Carbon 215, 118445 (2023).

    Article  CAS  Google Scholar 

  29. N. Zhou, L. Zhang, W. Wang, X. Zhang, K. Zhang, M. Chen, Y. Huang, R. He, and D. Fang, Stereolithographically 3D printed SiC metastructure for ultrabroadband and high temperature microwave absorption. Adv. Mater. Technol. 8, 2201222 (2023).

    Article  CAS  Google Scholar 

  30. Z. Xiang, Y. Wang, X. Yin, and Q. He, Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres. Chem. Eng. J. 451, 138742 (2023).

    Article  CAS  Google Scholar 

  31. Y. Wu, L. Chen, Y. Han, P. Liu, H. Xu, G. Yu, Y. Wang, T. Wen, W. Ju, and J. Gu, Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 16, 7801 (2023).

    Article  CAS  Google Scholar 

  32. S. Ren, H. Yu, L. Wang, Z. Huang, T. Lin, Y. Huang, J. Yang, Y. Hong, and J. Liu, State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 14, 1 (2022).

    Article  Google Scholar 

  33. S. Zheng, Z. Zeng, J. Qiao, Y. Liu, and J. Liu, Facile preparation of C/MnO/Co nanocomposite fibers for high-performance microwave absorption. Compos. Part A-Appl. S. 155, 106814 (2022).

    Article  CAS  Google Scholar 

  34. P. Liu, Z. Yao, J. Zhou, Z. Yang, and L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C. 4, 9738 (2016).

    Article  CAS  Google Scholar 

  35. J. Zhang, P. Wang, Y. Chen, G. Wang, D. Wang, L. Qiao, T. Wang, and F. Li, Microwave absorption properties of Co@C nanofiber composite for normal and oblique incidence. J. Electron. Mater. 47, 4703 (2018).

    Article  CAS  Google Scholar 

  36. L. Chen, Q. Deng, H. He, T. Ye, Y. Li, H. Wei, C. Zhou, F. Zhao, and Q. Wang, Three-dimensional reduction graphene oxide (rGO) supported ScFeO3 for enhancing microwave absorption properties. Mater. Charact. 191, 112168 (2022).

    Article  CAS  Google Scholar 

  37. D. Lan, H. Li, M. Wang, Y. Ren, J. Zhang, M. Zhang, L. Ouyang, J. Tang, and Y. Wang, Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater. Res. Bull. 171, 112630 (2023).

    Article  Google Scholar 

  38. Z. Zhou, D. Lan, J. Ren, Y. Cheng, Z. Jia, G. Wu, and P. Yin, Controllable heterogeneous interfaces and dielectric modulation of biomass-derived nanosheet metal-sulfide complexes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 185, 165 (2024).

    Article  Google Scholar 

  39. A. Feng, D. Lan, J. Liu, G. Wu, and Z. Jia, Dual strategy of A-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance. J. Mater. Sci. Technol. 180, 1 (2024).

    Article  Google Scholar 

  40. Y. Zhang, H. Meng, Y. Shi, X. Zhang, C. Liu, Y. Wang, C. Gong, and J. Zhang, TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption. Compos. Part B-Eng. 193, 108028 (2020).

    Article  CAS  Google Scholar 

  41. Z. Jia, D. Lan, M. Chang, Y. Han, and G. Wu, Heterogeneous interfaces and 3D foam structures synergize to build superior electromagnetic wave absorbers. Mater. Today Phys. 37, 101215 (2023).

    Article  CAS  Google Scholar 

  42. Z. Shen, D. Lan, Y. Cong, Y. Lian, N. Wu, and Z. Jia, Tailored heterogeneous interface based on porous hollow In-Co-C nanorods to construct adjustable multi-band microwave absorber. J. Mater. Sci. Technol. 181, 128 (2024).

    Article  Google Scholar 

  43. X. Cao, D. Lan, Y. Zhang, Z. Jia, G. Wu, and P. Yin, Construction of three-dimensional conductive network and heterogeneous interfaces via different ratio for tunable microwave absorption. Adv. Compos. Hybrid. Mater. 6(6), 187 (2023).

    Article  CAS  Google Scholar 

  44. G. He, Y. Duan, H. Pang, and J. Hu, Superior microwave absorption based on ZnO capped MnO2 nanostructures. Adv. Mater. Interfaces 7, 2000407 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (No. 2022YFC2204500) and the Aviation Science Foundation Project (No. 2023Z055053001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Tu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Tu, J., Xu, J. et al. Tunable Broadband TiO2@TiC Composites by In Situ Surface Oxidation for Electromagnetic Wave Absorption. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11013-z

Keywords

Navigation