Skip to main content
Log in

Theoretical Perspective of Fe-Induced Ferromagnetism in Antimonene: A Hybrid Functional Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using the Heyd–Scuseria–Ernzerhof hybrid functional method, we present a systematic study on the electronic and magnetic properties of Fe-doped antimonene. One and two Fe substitutions in an 8 × 8 supercell of antimonene are examined, and the thermodynamic and kinetic stability of Fe dopants in antimonene is thoroughly addressed. Results show that with a single Fe dopant in antimonene, the spins on the dopant are parallel to the induced spins on the surrounding Sb atoms via the hybridization between Sb 5p and Fe 3d orbitals, giving rise to ferromagnetism. Two Fe dopants in antimonene tend to stay at the substitutional sites next nearest to each other via the strong attraction, leading to the formation of the Fe-Sb-Fe cluster. With such a cluster, apart from the p-d hybridization between Fe and the surrounding Sb atoms (like the case of a single Fe dopant), two Fe atoms are found to couple ferromagnetically to each other via the mediation of the common nearest Sb atom. The ferromagnetic mechanisms between two Fe dopants are discussed and analyzed. This work offers useful theoretical guidance for promoting the applications of antimonene to spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.S. Tsai, C.W. Chen, C.H. Hsiao, H. Ouyang, and J.H. Liang, The advent of multilayer antimonene nanoribbons with room temperature orange light emission. Chem. Commun. 52, 8409 (2016).

    Article  CAS  Google Scholar 

  2. Y. Wang, P. Huang, M. Ye, R. Quhe, Y. Pan, H. Zhang, H. Zhong, J. Shi, and J. Lu, Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem. Mater. 29, 2191 (2017).

    Article  CAS  Google Scholar 

  3. E. Martínez-Perinan, M.P. Down, C. Gibaja, E. Lorenzo, F. Zamora, and C.E. Banks, Antimonene: a novel 2D nanomaterial for supercapacitor applications. Adv. Energy Mater. 8, 1702606 (2018).

    Article  Google Scholar 

  4. W. Tian, S. Zhang, C. Huo, D. Zhu, Q. Li, L. Wang, X. Ren, L. Xie, S. Guo, and P.K. Chu, Few-layer antimonene: anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries. ACS Nano 12, 1887 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. C. Gibaja, M. Assebban, I. Torres, M. Fickert, R. Sanchis-Gual, I. Brotons, W.S. Paz, J.J. Palacios, E.G. Michel, and G. Abellan, Liquid phase exfoliation of antimonene: systematic optimization, characterization and electrocatalytic properties. J. Mater. Chem. A 7, 22475 (2019).

    Article  CAS  Google Scholar 

  6. C.X. Xiao, H.R. Hu, Y.Y. Wu, X.Y. Ren, Q.Q. Li, G.H. Yang, Z.P. Dun, Y. Huang, and F. Yan. Peng, Antimonene-based flexible photodetector. Nanoscale Horiz. 5, 124 (2020).

    Article  ADS  CAS  Google Scholar 

  7. D. Singh, S.K. Gupta, Y. Sonvane, and I. Lukacevic, Antimonene: a monolayer material for ultraviolet optical nanodevices. J. Mater. Chem. C 4, 6386 (2016).

    Article  CAS  Google Scholar 

  8. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 4, 045010 (2017).

    Article  Google Scholar 

  9. M. Pumera and Z. Sofer, 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

    Article  Google Scholar 

  10. P. Ares, J.J. Palacios, G. Abellan, J. Gomez-Herrero, and F. Zamora, Recent progress on antimonene: a new bidimensional material. Adv. Mater. 11, 1703771 (2018).

    Article  Google Scholar 

  11. S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew. Chem. Int. Ed. 55, 1666 (2016).

    Article  CAS  Google Scholar 

  12. S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect-direct band-gap transitions. Angew. Chem. Int. Ed. 54, 3112 (2015).

    Article  CAS  Google Scholar 

  13. S.K. Gupta, Y. Sonvane, G. Wang, and R. Pandey, Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes. Chem. Phys. Lett. 641, 169 (2015).

    Article  ADS  CAS  Google Scholar 

  14. G. Pizzi, M. Gibertini, E. Dib, N. Marzari, G. Iannaccone, and G. Fiori, Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun. 7, 12585 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. R.S. Meng, M. Cai, J.K. Jiang, Q.H. Liang, X. Sun, Q. Yang, C.J. Tan, and X.P. Chen, First principles investigation of small molecules adsorption on antimonene. IEEE Electron Device Lett. 38, 134 (2017).

    Article  ADS  CAS  Google Scholar 

  16. O.U. Akturk, V.O. Ozcelik, and S. Ciraci, Single-layer crystalline phases of antimony: antimonenes. Phys. Rev. B 91, 235446 (2015).

    Article  ADS  Google Scholar 

  17. L.F. Yang, Y. Song, W.B. Mi, and X.C. Wang, Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene. Appl. Phys. Lett. 109, 022103 (2016).

    Article  ADS  Google Scholar 

  18. C. He, M. Cheng, and W.X. Zhang, Tunable electronic and magnetic properties of transition metals doped antimonene: a first-principles study. Mater. Res. Express 5, 065059 (2018).

    Article  ADS  Google Scholar 

  19. X. Han, M. Benkraouda, Z. Wang, Z. Zhang, and N. Amrane, Theoretical insights into the interplay between Sb vacancy and Fe on magnetic and optoelectronic properties of Fe-doped antimonene. Chem. Phys. 576, 112107 (2024).

    Article  CAS  Google Scholar 

  20. S. Dai, Y.L. Lu, and P. Wu, Tuning electronic, magnetic and optical properties of Cr-doped antimonene via biaxial strain engineering. Appl. Surf. Sci. 463, 492 (2019).

    Article  ADS  CAS  Google Scholar 

  21. H. Zou, H. Zhang, Z.X. Yang, and Z.H. Zhang, Magneto-electronic and spin transport properties of transition metal doped antimonene nanoribbons. Phys. E 126, 114408 (2021).

    Article  CAS  Google Scholar 

  22. M. Zhang, H. Guo, J. Lv, and H. Wu, Electronic and magnetic properties of 5d transition metal substitution doping monolayer antimonene: within GGA and GGA+ U framework. Appl. Surf. Sci. 508, 145197 (2020).

    Article  CAS  Google Scholar 

  23. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  ADS  CAS  Google Scholar 

  24. G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article  ADS  CAS  Google Scholar 

  25. P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  ADS  CAS  Google Scholar 

  26. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  ADS  CAS  Google Scholar 

  27. J. Heyd, G.E. Scuseria, and M. Ernzerhof, Erratum: “hybrid functionals based on a screened coulomb potential.” J. Chem. Phys. 124, 219906 (2006).

    Article  ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  30. S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Y. Zhou, G. Cheng, and J. Li, Coexistence of Co doping and strain on arsenene and antimonene: tunable magnetism and half-metallic behavior. RSC Adv. 8, 1320 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. X. Chen, Q. Yang, R. Meng, J. Jiang, Q. Liang, C. Tan, and X. Sun, The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C 4, 5434 (2016).

    Article  CAS  Google Scholar 

  33. X. Han, M. Benkraouda, and N. Amrane, S vacancy enhanced ferromagnetism in Mn-doped monolayer MoS2: a hybrid functional study. Chem. Phys. 541, 111043 (2021).

    Article  CAS  Google Scholar 

  34. A.N. Andriotis and M. Menon, Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B 90, 125304 (2014).

    Article  ADS  Google Scholar 

  35. X. Han, M. Benkraouda, N. Qamhieh, and N. Amrane, Understanding ferromagnetism in Ni-doped MoS2 monolayer from first principles. Chem. Phys. 528, 110501 (2020).

    Article  CAS  Google Scholar 

  36. J.P. Buban, H. Iddle, and S. Ogut, Structural and electronic properties of oxygen vacancies in cubic and antiferrodistortive phases of SrTiO3. Phys. Rev. B 69, 180102 (2004).

    Article  ADS  Google Scholar 

  37. C. Zener, Interaction between the shells in the transition metals. Phys. Rev. 81, 440 (1951).

    Article  ADS  CAS  Google Scholar 

  38. C. Zener, Interaction between the shells in the transition metals. III. Calculation of the Weiss factors in Fe Co, and Ni. Phys. Rev. 83, 299 (1951).

    Article  ADS  CAS  Google Scholar 

  39. M. Dobrowolska, K. Tivakornsasithorn, X. Liu, J.K. Furdyna, M. Berciu, K.M. Yu, and W. Walukiewicz, Controlling the curie temperature in (Ga, Mn) as through location of the fermi level within the impurity band. Nat. Mater. 11, 444 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. S. Sanvito, P. Ordejón, and N.A. Hill, First-principles study of the origin and nature of ferromagnetism in Ga1–xMnxAs. Phys. Rev. B 63, 165206 (2001).

    Article  ADS  Google Scholar 

  41. P. Mahadevan, A. Zunger, and D.D. Sarma, Unusual directional dependence of exchange energies in GaAs diluted with Mn: is the RKKY description relevant? Phys. Rev. Lett. 93, 177201 (2004).

    Article  ADS  PubMed  Google Scholar 

  42. C. Zener, Interaction between the shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951).

    Article  ADS  CAS  Google Scholar 

  43. A.N. Andriotis and M. Menon, Successive spin polarization contribution to the magnetic coupling in diluted magnetic semiconductors: a quantitative verification. J. Magn. Magn. Mater. 501, 166313 (2020).

    Article  CAS  Google Scholar 

  44. X. Han, N. Amrane, Z. Zhang, and M. Benkraouda, Oxygen vacancy ordering and electron localization in CeO2: hybrid Functional Study. J. Phys. Chem. C 120, 13325 (2016).

    Article  CAS  Google Scholar 

  45. G. Henkelman and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  CAS  Google Scholar 

  46. G. Henkelman and H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge grants from the United Arab Emirates University Program for Advanced Research (Grant Nos: 12S096, 31R146, and G00003267) and from North University of China through the Key R&D Plans of Shanxi Province (Grant No. 201803D421084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Amrane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Benkraouda, M., Zhang, Z. et al. Theoretical Perspective of Fe-Induced Ferromagnetism in Antimonene: A Hybrid Functional Study. J. Electron. Mater. 53, 1816–1822 (2024). https://doi.org/10.1007/s11664-024-10949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-10949-6

Keywords

Navigation