Skip to main content
Log in

Investigation of a Gate Stack Gate-All-Around Junctionless Nanowire Field-Effect Transistor for Oxygen Gas Sensing

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The design and analysis of a gate stack gate-all-around junctionless nanowire field-effect transistor (GAA-JL-NWFET) with a catalytic metal as gate contact for oxygen gas sensing is presented in this study. An n-channel GAA-JL-NWFET design using gold (Au) as the gate metal electrode is employed for oxygen sensing by utilizing appropriate work function values, which interact with oxygen gas and change the device's electrical properties. This work focuses on changes in temperature (300–500 K) and Au metal gate work function (5.05–5.20 eV) to investigate the presence of oxygen molecules and their impact on the GAA-JL-NWFET gas sensor performance. Changes in the surface potential, threshold voltage, hole concentration, electron concentration, subthreshold voltage, electric field, and drain current using the ATLAS TCAD simulator are investigated for the adsorption of gas molecules to determine the electrical characteristics of the proposed device. Changes in threshold voltage (Vth), switching ratio, and subthreshold current sensitivity (\(S_{{I_{{{\text{OFF}}}} }}\)) can be considered as sensitivity parameters for sensing oxygen gas molecules. The results reveal that as the Au work function shifts at the gate by 100 mV, the sensitivity (\(S_{{I_{{{\text{OFF}}}} }}\)) enhancement using gate stack GAA-JL-NWFET-based oxygen gas sensors compared to GAA-MOSFET and conventional MOSFET are 15.13% and 88.31%, respectively. Based on our simulation results, the proposed device offers excellent sensitivity, low power consumption, and a fast response time, making it an appropriate candidate for oxygen gas sensing, including environmental monitoring, medical diagnosis, and industrial safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Sarangadharan, A.K. Pulikkathodi, C.-H. Chu, Y.-W. Chen, A. Regmi, P.-C. Chen, C.-P. Hsu, and Y.-L. Wang, Review—high field modulated FET biosensors for biomedical applications. ECS J. Solid State Sci. Technol. 7, Q3032 (2018).

    Article  CAS  Google Scholar 

  2. S. Singh, M. Khosla, G. Wadhwa, and B. Raj, Design and analysis of double-gate junctionless vertical TFET for gas sensing applications. Appl. Phys. A. Phys. A 127, 1 (2021).

    ADS  Google Scholar 

  3. Design and Performance Analysis of GAA Schottky Barrier‑gate Stack Dopingless Nanowire Phosphine Gas Sensor.Pdf.

  4. Y. Pratap, M. Kumar, M. Gupta, S. Haldar, R.S. Gupta, and S.S. Deswal, Sensitivity Investigation of Gate-All-around Junctionless Transistor for Hydrogen Gas Detection, 2016 IEEE Int. Nanoelectron. Conf. 1, 1 (2016).

    Google Scholar 

  5. S. Mokkapati, N. Jaiswal, M. Gupta, and A. Kranti, Gate-All-around nanowire junctionless transistor-based hydrogen gas sensor. IEEE Sens. J. 19, 4758 (2019).

    Article  ADS  CAS  Google Scholar 

  6. R. Chaujar and M. G. Yirak, Sensitivity investigation of junctionless gate-all-around silicon nanowire field-effect transistor-based hydrogen gas sensor, Silicon (2022).

  7. A. Kumar, Palladium-based trench gate MOSFET for highly sensitive hydrogen gas sensor. Mater. Sci. Semicond. Process. 120, 105274 (2020).

    Article  CAS  Google Scholar 

  8. G.B. Pour and L.F. Aval, Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature. Results Phys. 7, 1993 (2017).

    Article  ADS  Google Scholar 

  9. K. Tamersit and F. Djeffal, Double-Gate graphene nanoribbon field-effect transistor for DNA and gas sensing applications: simulation study and sensitivity analysis. IEEE Sens. J. 16, 4180 (2016).

    Article  ADS  Google Scholar 

  10. N. Van Toan, N. Viet Chien, N. Van Duy, H. Si Hong, H. Nguyen, N. Duc Hoa, and N. Van Hieu, Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd Islands. J. Hazard. Mater. 301, 433 (2016).

    Article  Google Scholar 

  11. J. Modi and B. H. Soni, A Comparative Study of Sub-Threshold Swing for Different TFET Structures Performance of TFET Device, I, 42 (2014).

  12. J. Madan, R. Pandey, and R. Chaujar, Conducting polymer based gas sensor using PNIN-Gate all around-tunnel FET. SILICON 12(12), 2947 (2020).

    Article  CAS  Google Scholar 

  13. R. Gautam, M. Saxena, R.S. Gupta, and M. Gupta, Gate-all-around nanowire MOSFET with catalytic metal gate for gas sensing applications. IEEE Trans. Nanotechnol. 12, 939 (2013).

    Article  ADS  CAS  Google Scholar 

  14. C.H. Kim, I.T. Cho, J.M. Shin, K.B. Choi, J.K. Lee, and J.H. Lee, A new gas sensor based on MOSFET having a horizontal floating-gate. IEEE Electron Device Lett. 35, 265 (2014).

    Article  ADS  Google Scholar 

  15. T. Usagawa and Y. Kikuchi, A Pt-Ti-O Gate Si-Metal-Insulator-Semiconductor Field-Effect Transistor Hydrogen Gas Sensor, J. Appl. Phys. 108, (2010).

  16. Y. Zhang, J. Zhang, B. Zhang, R. Si, B. Han, F. Hong, L. Sun, L. Li, B. Qiao, K. Sun, J. Huang, and M. Haruta, Boosting the catalysis of gold by O2 activation at Au-SiO2 interface. Nat. Commun. 1, 558 (2020).

    Article  ADS  Google Scholar 

  17. N.F. Kosmani, F.A. Hamid, and M.A. Razali, Effects of high-k dielectric materials on electrical performance of double gate and gate-all-around MOSFET. Int. J. Integr. Eng. 12, 81 (2020).

    Google Scholar 

  18. G. Dhiman, Investigation of junction-less double gate MOSFET with high-k gate-oxide and metal gate layers. Int. J. Innov. Res. Sci. Eng. Technol. 8, 289 (2019).

    Google Scholar 

  19. Q. Li, H. Zhu, H. Yuan, O. Kirillov, D. Ioannou, J. Suehle, and C.A. Richter, A Study of metal gates on HfO2 using Si nanowire field effect transistors as platform. ECS Meet. Abstr. Ma2012-02, 2614 (2012).

    Article  Google Scholar 

  20. V. Mishra, L. Agarwal, C. Tiwari, and S. K. Gupta, Potential Sensing Application of Oxygen Gas with Charge Plasma Based Negative Capacitance Tunnel FET, Silicon (2022).

  21. M. Gupta and V.P.-H. Hu, Influence of channel doping on junctionless and negative capacitance junctionless transistors. ECS J. Solid State Sci. Technol. 10, 065009 (2021).

    Article  ADS  CAS  Google Scholar 

  22. J. Robertson, High dielectric constant oxides. Eur. Phys. JournalApplied Phys. 184, 177 (2006).

    Google Scholar 

  23. U. Sharma, G. Kumar, S. Mishra, and R. Thomas, Advancement of gate oxides from SiO2 to High-k dielectrics in microprocessor and memory. J. Phys. Conf. Ser. 2267, 012142 (2022).

    Article  Google Scholar 

  24. G.D. Wilk, R.M. Wallace, and J.M. Anthony, High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).

    Article  ADS  CAS  Google Scholar 

  25. W.M. Sachtler, G.J.H. Dorgelo, and A.A. Holscher, The work function of gold. Surf. Sci.. Sci. 5, 221 (1966).

    Article  ADS  CAS  Google Scholar 

  26. D.S. Software, ATLAS User’s Manual. IEEE Electron Device Lett. 408, 567 (2013).

    Google Scholar 

  27. N. Gupta and R. Chaujar, Influence of Gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers. Appl. Phys. A Mater. Sci. Process. 122, 1 (2016).

    Article  Google Scholar 

  28. Z.X. Chen, H.Y. Yu, N. Singh, N.S. Shen, R.D. Sayanthan, G.Q. Lo, and D. Kwong, Demonstration of tunneling FETs based on highly scalable vertical silicon nanowires. IEEE Electron Device Lett. 30, 754 (2009).

    Article  ADS  CAS  Google Scholar 

  29. A. Goel, S. Rewari, S. Verma, and R. S. Gupta, Dielectric Modulated Triple Metal Gate All Around MOSFET (TMGAA)for DNA Bio-Molecule Detection, in 2018 IEEE Electron Devices Kolkata Conference (EDKCON), Vol. 1 (IEEE, 2019), pp. 337–340.

  30. S. P. Pandey, R. S. Kushwah, S. B. Singh, and S. Akashe, Analytical Modeling and Comparison of Triple Gate MOSFET with Double Gate MOSFET, 2013 Int. Conf. Control. Comput. Commun. Mater. ICCCCM 2013 (2013).

  31. C.W. Hung, K.W. Lin, R.C. Liu, Y.Y. Tsai, P.H. Lai, S.I. Fu, T.P. Chen, H.I. Chen, and W.C. Liu, On the hydrogen sensing properties of a Pd/GaAs transistor-type gas sensor in a nitrogen ambiance. Sens. Actuators B Chem. 125, 22 (2007).

    Article  CAS  Google Scholar 

  32. J. Madan, R. Pandey, and R. Chaujar, Conducting polymer based gas sensor using PNIN- gate all around - tunnel FET. Silicon 12, 2947 (2020).

    Article  CAS  Google Scholar 

  33. N. Gupta and R. Chaujar, Optimization of high-k and gate metal workfunction for improved analog and intermodulation performance of gate stack (GS)-GEWE-SiNW MOSFET. Superlattices Microstruct. 97, 630 (2016).

    Article  ADS  CAS  Google Scholar 

  34. E. Gnani, S. Reggiani, M. Rudan, and G. Baccarani, Effects of high-κ: (HfO2) gate dielectrics in double-gate and cylindrical-nanowire FETs scaled to the ultimate technology nodes. IEEE Trans. Nanotechnol. 6, 90 (2007).

    Article  ADS  Google Scholar 

  35. F. Garcia Ruiz, I.M. Tienda-Luna, A. Godoy, L. Donetti, and F. Gamiz, Equivalent oxide thickness of trigate SOI MOSFETs with high-κ insulators. IEEE Trans. Electron Devices. Electron. Devices 56, 2711 (2009).

    Article  ADS  CAS  Google Scholar 

  36. S.L. Tripathi, R. Mishra, and R.A. Mishra, Multi-gate mosfet structures with high-K dielectric materials. J. Electron. Devices 16, 1388 (2012).

    Google Scholar 

  37. H. Ilatikhameneh, S. Kim, K. Ng, and G. Klimeck, Optimum High-k Oxide for the Best Performance of Ultra-Scaled Double-Gate MOSFETs, (2015).

Download references

Acknowledgments

Ethiopia's Ministry of Higher Education and Delhi Technological University's Microelectronics Research Laboratory are acknowledged for providing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishu Chaujar.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaujar, R., Yirak, M.G. Investigation of a Gate Stack Gate-All-Around Junctionless Nanowire Field-Effect Transistor for Oxygen Gas Sensing. J. Electron. Mater. 53, 2191–2201 (2024). https://doi.org/10.1007/s11664-024-10948-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-10948-7

Keywords

Navigation