Abstract
In this study, we focused on depositing a target material, cobalt-iron-dysprosium (Co60Fe20Dy20), onto silicon (Si) (100) substrates with thickness varying from 10 nm to 50 nm through a direct-current (DC) magnetron sputtering technique. The subsequent step involved subjecting the samples to an hour-long annealing process in a vacuum annealing furnace at temperatures of 100°C, 200°C, and 300°C. To assess the elemental composition of the CoFeDy films, energy-dispersive X-ray spectroscopy (EDS) was employed. An observed trend indicated an increase in low-frequency alternating-current magnetic susceptibility (χac) with the increasing thickness. Remarkably, the CoFeDy films exhibited their peak χac following annealing at 300°C, with an optimal resonance frequency of 50 Hz. After annealing at 300°C, the CoFeDy film’s surface energy peaked at 50 nm. The magnetic, electrical, and adhesive properties of the CoFeDy films were notably influenced by surface roughness at different annealing temperatures. Atomic force microscopy (AFM) analysis revealed a gradual reduction in film roughness post-annealing, corresponding to smoother surfaces indicative of a weaker domain wall pinning effect, heightened carrier conductivity, and increased liquid spreading. Collectively, these outcomes contributed to diminished χac, reduced electrical resistance, and enhanced adhesion.
Graphical Abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
C. Grezes, X. Li, K.L. Wong, F. Ebrahimi, P.K. Amiri, and K.L. Wang, Voltage-controlled magnetic tunnel junctions with synthetic ferromagnet free layer sandwiched by asymmetric double MgO barriers. J. Phys. D Appl. Phys. 53, 014006 (2019). https://doi.org/10.1088/1361-6463/ab4856.
B. Dieny and M. Chshiev, Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phy. 89, 025008 (2017). https://doi.org/10.1103/RevModPhys.89.025008.
H. Honjo, M. Niwa, K. Nishioka, T.V.A. Nguyen, H. Naganuma, Y. Endo, M. Yasuhira, S. Ikeda, and T. Endoh, Influence of hard mask materials on the magnetic properties of perpendicular MTJs with double CoFeB/MgO interface. IEEE Trans. Magn. 56, 1 (2020). https://doi.org/10.1109/TMAG.2020.3004576.
I.Y. Pashen’kin, M.V. Sapozhnikov, N.S. Gusev, V.V. Rogov, D.A. Tatarskiia, A.A. Fraermana, and M.N. Volochaevc, Magnetoelectric effect in CoFeB/MgO/CoFeB magnetic tunnel junctions. JETP Lett. 111, 690 (2020). https://doi.org/10.1134/S0021364020120115.
T. Osaka, T. Yokoshima, D. Shiga, K. Imai, and K. Takashima, A high moment CoFe soft magnetic thin film prepared by electrodeposition. Solid-State Lett. 6, C53 (2003). https://doi.org/10.1149/1.1554291.
A. Soundararaj and J. Mohanty, Impact of deposition potential on structural and magnetic properties of nano-crystalline CoFe alloy thin films. Surf. Eng. Appl. Electrochem. 56, 159 (2020). https://doi.org/10.3103/S1068375520020180.
H.L. Honig, M. Hopfeld, and P. Schaaf, Preparation and properties of Co/Fe multilayers and Co–Fe alloy films for application in magnetic field sensors. Key Eng. Mater. 865, 61 (2020). https://doi.org/10.4028/www.scientific.net/KEM.865.61.
S. Zhang, Y. Zhang, L. Zhang, Z. Li, Y. Ren, Q. Jin, and Z. Zhang, Temperature dependence of magnetic properties in CoFe/Tb multilayers with perpendicular magnetic anisotropy. ACS Appl. Electron. Mater. 4, 5361 (2022). https://doi.org/10.1021/acsaelm.2c01046.
O. Inyang, A. Rafiq, C. Swindells, S. Ali, and D. Atkinson, The role of low Gd concentrations on magnetisation behaviour in rare earth:transition metal alloy films. Sci. Rep. 10, 9767 (2020). https://doi.org/10.1038/s41598-020-66595-5.
J.A. González, J.P. Andrés, and R.L. Antón, Applied trends in magnetic rare earth/transition metal alloys and multilayers. Sensors 21, 5615 (2021). https://doi.org/10.3390/s21165615.
Q. Chen, Q. Guo, Z. Huang, B. Fang, S. Li, W. Lv, R. Li, Y. Luo, J. Du, B. Zhang, Y. Zhai, Y. Fan, and Z. Zeng, Magnetization dependent spin orbit torques generated by ferrimagnetic FeCoTb alloys. J. Alloys Compd. 930, 167351 (2023). https://doi.org/10.1016/j.jallcom.2022.167351.
H. Huang, Y. Ou, S. Xu, G. Fang, M. Li, and X.Z. Zhao, Properties of Dy-doped ZnO nanocrystalline thin films prepared by pulsed laser deposition. Appl. Surf. Sci. 254, 2013 (2008). https://doi.org/10.1016/j.apsusc.2007.08.041.
T.K. Lin, H.W. Chang, C.R. Wang, D.H. Wei, C.S. Tu, and P.Y. Chen, Structure transition and enhanced multiferroic properties of Dy-doped BiFeO3 thin films. Surf. Coat. Technol. 435, 128257 (2022). https://doi.org/10.1016/j.surfcoat.2022.128257.
X. Ming, X. Han, M. Yang, and G. Yan, Enhanced magnetic performance of sintered Nd–Fe–B magnets by Dy–Co film grain boundary diffusion. J. Magn. Magn. Mater. 550, 169064 (2014). https://doi.org/10.1016/j.jmmm.2022.169064.
N. Moslemzadeh, S.D. Barrett, J. Ledieu, and E. Cox, A c(2×2) structure of Dy on W(100) with high thermal stability. Surf. Sci. 513, L425 (2002). https://doi.org/10.1016/S0039-6028(02)01826-5.
T.H. Kim, T.T. Sasaki, T. Ohkubo, Y. Takada, A. Kato, Y. Kaneko, and K. Hono, Microstructure and coercivity of grain boundary diffusion processed Dy-free and Dy-containing NdFeB sintered magnets. Acta Mater. 172, 139 (2019). https://doi.org/10.1016/j.actamat.2019.04.032.
W.G. Jiang, J.J. Su, and X.Q. Feng, Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 75, 4965 (2008). https://doi.org/10.1016/j.engfracmech.2008.06.016.
V. Cech, T. Lasota, E. Palesch, and J. Lukes, The critical influence of surface topography on nanoindentation measurements of a-sic:h films. Surf. Coat. Technol. 261, 114 (2015). https://doi.org/10.1016/j.surfcoat.2014.11.049.
J.Y. Kim, S.K. Kang, J.J. Lee, J. Jang, Y.H. Lee, and D. Kwon, Influence of surface-roughness on indentation size effect. Acta Mater. 55, 3555 (2007). https://doi.org/10.1016/j.actamat.2007.02.006.
P. Berke, F.E. Houdaigui, and T.J. Massart, Coupled friction and roughness surface effects in shallow spherical nanoindentation. Wear 268, 223 (2010). https://doi.org/10.1016/j.wear.2009.07.015.
L. Güniat, S.M. Sánchez, O. Garcia, M. Boscardin, D. Vindice, N. Tappy, M. Friedl, W. Kim, M. Zamani, L. Francaviglia, A. Balgarkashi, J.B. Leran, J. Arbiol, and AFi. Morra, III–V Iintegration on Si(100): vertical nanospades. ACS Nano 13, 5833 (2019). https://doi.org/10.1021/acsnano.9b01546.
L. Ki, J. Kim, H. Lee, D. Jung, and Y. Roh, Electrical characteristics of Al/CeO2(200)/Si(100) and Al/CeO2(111)/Si(100) metal-insulator-semiconductor structure. Jpn. J. Appl. Phys. 40, L564 (2001). https://doi.org/10.1143/JJAP.40.L564.
G. Zhu, M. Han, B. Xiao, and Z. Gan, On the microcrystal structure of sputtered Cu films deposited on Si(100) surfaces: experiment and integrated multiscale simulation. Molecules 28, 4786 (2023). https://doi.org/10.3390/molecules28124786.
V.R. Chinchamalatpure, S.A. Ghosh, and G.N. Chaudhari, Synthesis and electrical characterization of BaTiO3 thin films on Si(100). Mater. Sci. Appl. 1, 187 (2010). https://doi.org/10.4236/msa.2010.14029.
K. Ma, T.S. Chung, and R.J. Good, Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. J. Polym. Sci. 36, 2327 (1998). https://doi.org/10.1002/(SICI)1099-0488(19980930)36:13%3c2327::AID-POLB8%3e3.0.CO;2-P.
D.K. Owens and R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741 (1969). https://doi.org/10.1002/app.1969.070130815.
D.H. Kaelble and K.C. Uy, A reinterpretation of organic liquid-polytetrafluoroethylene surface interactions. J. Adhens. 2, 50 (1970). https://doi.org/10.1080/0021846708544579.
M. Vasiliev, M.N.E. Alam, K. Alameh, P. Premchander, Y.T. Lee, V.A. Kotov, and Y.P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content. J. Phys. D Appl. Phys. 44, 75002 (2011). https://doi.org/10.1088/0022-3727/44/7/075002.
J. Kobata and K.I. Miura, Effects of Ar ion bombardment by unbalanced magnetron sputtering on mechanical and thermal properties of Ti–Cu–Zr–Ni–Hf–Si thin film metallic glass. Mater. Des. 111, 271 (2016). https://doi.org/10.1016/j.matdes.2016.09.005.
M.S. Reis, R.M. Rubinger, N.A. Sobolev, M.A. Valente, K. Yamada, K. Sato, Y. Todate, A. Bouravleuv, P.J.V. Ranke, and S. Gama, Influence of the strong magnetocrystalline anisotropy on the magnetocaloric properties of MnP single crystal. Phys. Rev. B 77, 104439 (2008). https://doi.org/10.1103/PhysRevB.77.104439.
D. Wen, J. Li, G. Gan, Y. Yang, H. Zhang, and Y. Liu, Double peaks of the permeability spectra of obliquely sputtered CoFeB amorphous films. Mater. Res. Bull. 110, 107 (2019). https://doi.org/10.1016/j.materresbull.2018.10.015.
K. Wang, Z. Xu, Y. Huang, Y. Qiu, and S. Dong, Magnetic, thermal, electrical properties and crystallization kinetics of Co60Fe20B20 alloy films. Sci. China Mater. 59, 639 (2016). https://doi.org/10.1007/s11432-016-5564-2.
W. Chen, R.W. Gao, L.M. Liu, M.G. Zhu, G.B. Han, H.Q. Liu, and W. Li, Effective anisotropy, exchange-coupling length and coercivity in Nd8−xRxFe87.5B4.5 (R=Dy, Sm, x=0–0.6) nanocomposite. Mater. Sci. Eng. B 110, 107 (2004). https://doi.org/10.1016/j.mseb.2004.02.012.
S.Y. Yang, J.J. Chien, W.C. Wang, C.Y. Yu, N.S. Hing, H.E. Hong, C.Y. Hong, H.C. Yang, C.F. Chang, and H.Y. Lin, Magnetic nanoparticles for high-sensitivity detection on nucleic acids via superconducting-quantum-interference-device-based immunomagnetic reduction assay. J. Magn. Magn. Mater. 323, 681 (2011). https://doi.org/10.1016/j.jmmm.2010.10.011.
W. Yang, J. Liu, X. Yu, G. Wang, Z. Zheng, J. Guo, D. Chen, Z. Qiu, and D. Zeng, The preparation of high saturation magnetization and low coercivity feco soft magnetic thin films via controlling the thickness and deposition temperature. Materials 15, 7191 (2022). https://doi.org/10.3390/ma15207191.
L. Rohman, A. Arkundato, Y.T. Mulyani, and D. Djuhana, Magnetic susceptibility and curie temperature of Co1-xFex alloy nanocube and nanosphere using micromagnetic simulation. J. Phys. Conf. Ser. 1825, 012003 (2021). https://doi.org/10.1088/1742-6596/1825/1/012003.
M.K. Pandey and A.K. Kar, Effect of annealing temperature on the magnetic domain structure and surface mechanical properties of Ni–C composite thin films: magnetic and lateral force microscopy, and force-distance spectroscopy. Mater. Lett. 301, 130295 (2021). https://doi.org/10.1016/j.matlet.2021.130295.
T.T.B. Lan and A.A.C. Sun, Magnetic properties and surface morphology of Pr-Fe-B thicker films at high annealing temperature. J. Magn. Magn. Mater. 564, 170086 (2022). https://doi.org/10.1016/j.jmmm.2022.170086.
G. Pookat, H. Thomas, S. Thomas, S.H.A. Harthi, L. Raghavan, I.A.A. Omari, D. Sakthikumar, R.V. Ramanujan, and M.R. Anantharaman, Evolution of structural and magnetic properties of Co–Fe based metallic glass thin films with thermal annealing. Surf. Coat. Technol. 236, 246 (2013). https://doi.org/10.1016/j.surfcoat.2013.09.055.
C. Hu, C. He, X. Gan, X. Wan, F. Hu, W. Zhou, H. Wang, and K. Wu, Probing the impact of grain interior and grain boundaries on the mechanical behavior of a high-Mn austenitic steel. J. Mater. Res. Technol. 21, 5098 (2022). https://doi.org/10.1016/j.jmrt.2022.11.085.
N. Hasani, M.H. Ghoncheh, R.M. Kindermann, H. Pirgazi, M. Sanjari, S. Tamimi, S. Shakerin, L.A.I. Kestens, M.J. Roy, and M. Mohammadi, Dislocations mobility in superalloy-steel hybrid components produced using wire arc additive manufacturing. Mater. Des. 220, 110899 (2022). https://doi.org/10.1016/j.matdes.2022.110899.
P. Jenei, C. Kádár, G. Han, P.T. Huang, H. Choe, and J. Gubicza, Annealing-induced changes in the microstructure and mechanical response of a Cu nanofoam processed by dealloying. Metals 10, 1128 (2020). https://doi.org/10.3390/met10091128.
W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998). https://doi.org/10.1016/S0022-5096(97)00086-0.
Q. Zhou, Y. Ren, Y. Du, D. Hua, and W. Han, Cracking and toughening mechanisms in nanoscale metallic multilayer films: a brief review. Appl. Sci. 8, 1821 (2018). https://doi.org/10.3390/app8101821.
X. Li and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48, 11 (2002). https://doi.org/10.1016/S1044-5803(02)00192-4.
R. Venkatraman and J.C. Bravman, Separation of film thickness and grain boundary strengthening effects in Al thin films on Si. J. Mater. Res. 7, 2040 (1992). https://doi.org/10.1557/JMR.1992.2040.
D. Beegan and M.T. Laugier, Application of composite hardness models to copper thin film hardness measurement. Surf. Coat. Technol. 199, 32 (2005). https://doi.org/10.1016/j.surfcoat.2005.04.014.
C. Walter, T. Antretter, R. Daniel, and C. Mittere, Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters. Surf. Coat. Technol. 202, 1103 (2007). https://doi.org/10.1016/j.surfcoat.2007.07.038.
O.J.Z. Hurtado, V.C.D.G. Tiralongo, and M.C.C. Aguirre, Effect of surface hardness and roughness produced by turning on the torsion mechanical properties of annealed AISI 1020 steel. Rev. Fac. Ing. 84, 55 (2017). https://doi.org/10.17533/udea.redin.n84a07.
J.W. Song and L.W. Fan, Understanding the effects of surface roughness on the temperature and pressure relevancy of water contact angles. Colloids Surf. 656, 130391 (2023). https://doi.org/10.1016/j.colsurfa.2022.130391.
D.R. Absolom, K. Eom, E.I.V. Butler, H.A. Hamza, and A.W. Neumann, Surface properties of coal particles in aqueous media II. Adhesion of coal particles to polymeric substrates. Colloids Surf. 17, 143 (1986). https://doi.org/10.1016/0166-6622(86)80242-6.
R. Laukemper, T. Becker, and M. Jekle, Surface energy of food contact materials and its relation to wheat dough adhesion. Food Bioproc. Tech. 14, 1142 (2021). https://doi.org/10.1007/s11947-021-02625-y.
M.S. Islsm, L. Tong, and P.J. Falzon, Influence of metal surface preparation on its surface profile, contact angle, surface energy and adhesion with glass fibre prepreg. Int. J. Adhes. Adhes. 51, 32 (2014). https://doi.org/10.1016/S0143-7496(14)00081-5.
B. Giroire, M. Ali Ahmad, G. Aubert, L.T. Gay, D. Michau, J.J. Watkins, C. Aymonier, and A.P. Quintin, A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques. Thin Solid Films 643, 53 (2017). https://doi.org/10.1016/j.tsf.2017.09.002.
T. Grudniewski and E. Michaluk, Research on the possibility of controlling the growth of thin copper layers deposited by DC magnetron sputtering. Heliyon 9, e14936 (2023). https://doi.org/10.1016/j.heliyon.2023.e14936.
H. Marom and M. Eizenberg, The effect of surface roughness on the resistivity increase in nanometric dimensions. J. Appl. Phy. 99, 123705 (2006). https://doi.org/10.1063/1.2204349.
M.Z. Butt, D. Ali, M.U. Tanveer, and S. Naseem, Surface roughness and electrical resistivity of high-purity zinc irradiated with nanosecond visible laser pulses. Appl. Sur. Sci. 305, 466 (2014). https://doi.org/10.1016/j.apsusc.2014.03.114.
Y. Ke, F. Zahid, V. Timoshevskii, K. Xia, D. Gall, and H. Guo, Resistivity of thin Cu films with surface roughness. Phy. Rev. B 79, 155406 (2009). https://doi.org/10.1103/PhysRevB.80.115409.
A. Javidjam, M.H. Hekmatshoar, L. Hedayatifar, and S.N.K. Abad, Effect of surface roughness on electrical conductivity and hardness of silver plated copper. Mater. Res. Express 6, 036407 (2018). https://doi.org/10.1088/2053-1591/aaf4c5.
Acknowledgments
This work was assisted by the National Yunlin University of Science and Technology (113T01).
Author information
Authors and Affiliations
Contributions
Conceptualization, W-JL, Y-HC,Y-TC and S-HL; methodology, Y-TC, Y-HC, C-CL and P-LC; validation, formal analysis, Y-TC, C-CL and P-LC; investigation, Y-TC and W-JL; resources, C-CC; writing—original draft preparation, Y-TC; writing—review and editing, Y-TC and W-JL; supervision, Y-TC and Y-HC; project administration, Y-TC and S-HL; funding acquisition, Y-HC and C-CC All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, WJ., Chang, YH., Chiang, CC. et al. Effect of Surface Roughness on the Magnetism, Nano-indentation, Surface Energy, and Electrical Properties of Co60Fe20Dy20 Films on Si (100) Substrate. J. Electron. Mater. 53, 1752–1762 (2024). https://doi.org/10.1007/s11664-023-10904-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-023-10904-x