Skip to main content
Log in

Effect of Surface Roughness on the Magnetism, Nano-indentation, Surface Energy, and Electrical Properties of Co60Fe20Dy20 Films on Si (100) Substrate

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we focused on depositing a target material, cobalt-iron-dysprosium (Co60Fe20Dy20), onto silicon (Si) (100) substrates with thickness varying from 10 nm to 50 nm through a direct-current (DC) magnetron sputtering technique. The subsequent step involved subjecting the samples to an hour-long annealing process in a vacuum annealing furnace at temperatures of 100°C, 200°C, and 300°C. To assess the elemental composition of the CoFeDy films, energy-dispersive X-ray spectroscopy (EDS) was employed. An observed trend indicated an increase in low-frequency alternating-current magnetic susceptibility (χac) with the increasing thickness. Remarkably, the CoFeDy films exhibited their peak χac following annealing at 300°C, with an optimal resonance frequency of 50 Hz. After annealing at 300°C, the CoFeDy film’s surface energy peaked at 50 nm. The magnetic, electrical, and adhesive properties of the CoFeDy films were notably influenced by surface roughness at different annealing temperatures. Atomic force microscopy (AFM) analysis revealed a gradual reduction in film roughness post-annealing, corresponding to smoother surfaces indicative of a weaker domain wall pinning effect, heightened carrier conductivity, and increased liquid spreading. Collectively, these outcomes contributed to diminished χac, reduced electrical resistance, and enhanced adhesion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. C. Grezes, X. Li, K.L. Wong, F. Ebrahimi, P.K. Amiri, and K.L. Wang, Voltage-controlled magnetic tunnel junctions with synthetic ferromagnet free layer sandwiched by asymmetric double MgO barriers. J. Phys. D Appl. Phys. 53, 014006 (2019). https://doi.org/10.1088/1361-6463/ab4856.

    Article  ADS  CAS  Google Scholar 

  2. B. Dieny and M. Chshiev, Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phy. 89, 025008 (2017). https://doi.org/10.1103/RevModPhys.89.025008.

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Honjo, M. Niwa, K. Nishioka, T.V.A. Nguyen, H. Naganuma, Y. Endo, M. Yasuhira, S. Ikeda, and T. Endoh, Influence of hard mask materials on the magnetic properties of perpendicular MTJs with double CoFeB/MgO interface. IEEE Trans. Magn. 56, 1 (2020). https://doi.org/10.1109/TMAG.2020.3004576.

    Article  Google Scholar 

  4. I.Y. Pashen’kin, M.V. Sapozhnikov, N.S. Gusev, V.V. Rogov, D.A. Tatarskiia, A.A. Fraermana, and M.N. Volochaevc, Magnetoelectric effect in CoFeB/MgO/CoFeB magnetic tunnel junctions. JETP Lett. 111, 690 (2020). https://doi.org/10.1134/S0021364020120115.

    Article  ADS  Google Scholar 

  5. T. Osaka, T. Yokoshima, D. Shiga, K. Imai, and K. Takashima, A high moment CoFe soft magnetic thin film prepared by electrodeposition. Solid-State Lett. 6, C53 (2003). https://doi.org/10.1149/1.1554291.

    Article  CAS  Google Scholar 

  6. A. Soundararaj and J. Mohanty, Impact of deposition potential on structural and magnetic properties of nano-crystalline CoFe alloy thin films. Surf. Eng. Appl. Electrochem. 56, 159 (2020). https://doi.org/10.3103/S1068375520020180.

    Article  Google Scholar 

  7. H.L. Honig, M. Hopfeld, and P. Schaaf, Preparation and properties of Co/Fe multilayers and Co–Fe alloy films for application in magnetic field sensors. Key Eng. Mater. 865, 61 (2020). https://doi.org/10.4028/www.scientific.net/KEM.865.61.

    Article  Google Scholar 

  8. S. Zhang, Y. Zhang, L. Zhang, Z. Li, Y. Ren, Q. Jin, and Z. Zhang, Temperature dependence of magnetic properties in CoFe/Tb multilayers with perpendicular magnetic anisotropy. ACS Appl. Electron. Mater. 4, 5361 (2022). https://doi.org/10.1021/acsaelm.2c01046.

    Article  CAS  Google Scholar 

  9. O. Inyang, A. Rafiq, C. Swindells, S. Ali, and D. Atkinson, The role of low Gd concentrations on magnetisation behaviour in rare earth:transition metal alloy films. Sci. Rep. 10, 9767 (2020). https://doi.org/10.1038/s41598-020-66595-5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. J.A. González, J.P. Andrés, and R.L. Antón, Applied trends in magnetic rare earth/transition metal alloys and multilayers. Sensors 21, 5615 (2021). https://doi.org/10.3390/s21165615.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Q. Chen, Q. Guo, Z. Huang, B. Fang, S. Li, W. Lv, R. Li, Y. Luo, J. Du, B. Zhang, Y. Zhai, Y. Fan, and Z. Zeng, Magnetization dependent spin orbit torques generated by ferrimagnetic FeCoTb alloys. J. Alloys Compd. 930, 167351 (2023). https://doi.org/10.1016/j.jallcom.2022.167351.

    Article  CAS  Google Scholar 

  12. H. Huang, Y. Ou, S. Xu, G. Fang, M. Li, and X.Z. Zhao, Properties of Dy-doped ZnO nanocrystalline thin films prepared by pulsed laser deposition. Appl. Surf. Sci. 254, 2013 (2008). https://doi.org/10.1016/j.apsusc.2007.08.041.

    Article  ADS  CAS  Google Scholar 

  13. T.K. Lin, H.W. Chang, C.R. Wang, D.H. Wei, C.S. Tu, and P.Y. Chen, Structure transition and enhanced multiferroic properties of Dy-doped BiFeO3 thin films. Surf. Coat. Technol. 435, 128257 (2022). https://doi.org/10.1016/j.surfcoat.2022.128257.

    Article  CAS  Google Scholar 

  14. X. Ming, X. Han, M. Yang, and G. Yan, Enhanced magnetic performance of sintered Nd–Fe–B magnets by Dy–Co film grain boundary diffusion. J. Magn. Magn. Mater. 550, 169064 (2014). https://doi.org/10.1016/j.jmmm.2022.169064.

    Article  CAS  Google Scholar 

  15. N. Moslemzadeh, S.D. Barrett, J. Ledieu, and E. Cox, A c(2×2) structure of Dy on W(100) with high thermal stability. Surf. Sci. 513, L425 (2002). https://doi.org/10.1016/S0039-6028(02)01826-5.

    Article  ADS  CAS  Google Scholar 

  16. T.H. Kim, T.T. Sasaki, T. Ohkubo, Y. Takada, A. Kato, Y. Kaneko, and K. Hono, Microstructure and coercivity of grain boundary diffusion processed Dy-free and Dy-containing NdFeB sintered magnets. Acta Mater. 172, 139 (2019). https://doi.org/10.1016/j.actamat.2019.04.032.

    Article  ADS  CAS  Google Scholar 

  17. W.G. Jiang, J.J. Su, and X.Q. Feng, Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 75, 4965 (2008). https://doi.org/10.1016/j.engfracmech.2008.06.016.

    Article  Google Scholar 

  18. V. Cech, T. Lasota, E. Palesch, and J. Lukes, The critical influence of surface topography on nanoindentation measurements of a-sic:h films. Surf. Coat. Technol. 261, 114 (2015). https://doi.org/10.1016/j.surfcoat.2014.11.049.

    Article  CAS  Google Scholar 

  19. J.Y. Kim, S.K. Kang, J.J. Lee, J. Jang, Y.H. Lee, and D. Kwon, Influence of surface-roughness on indentation size effect. Acta Mater. 55, 3555 (2007). https://doi.org/10.1016/j.actamat.2007.02.006.

    Article  ADS  CAS  Google Scholar 

  20. P. Berke, F.E. Houdaigui, and T.J. Massart, Coupled friction and roughness surface effects in shallow spherical nanoindentation. Wear 268, 223 (2010). https://doi.org/10.1016/j.wear.2009.07.015.

    Article  CAS  Google Scholar 

  21. L. Güniat, S.M. Sánchez, O. Garcia, M. Boscardin, D. Vindice, N. Tappy, M. Friedl, W. Kim, M. Zamani, L. Francaviglia, A. Balgarkashi, J.B. Leran, J. Arbiol, and AFi. Morra, III–V Iintegration on Si(100): vertical nanospades. ACS Nano 13, 5833 (2019). https://doi.org/10.1021/acsnano.9b01546.

    Article  CAS  PubMed  Google Scholar 

  22. L. Ki, J. Kim, H. Lee, D. Jung, and Y. Roh, Electrical characteristics of Al/CeO2(200)/Si(100) and Al/CeO2(111)/Si(100) metal-insulator-semiconductor structure. Jpn. J. Appl. Phys. 40, L564 (2001). https://doi.org/10.1143/JJAP.40.L564.

    Article  ADS  Google Scholar 

  23. G. Zhu, M. Han, B. Xiao, and Z. Gan, On the microcrystal structure of sputtered Cu films deposited on Si(100) surfaces: experiment and integrated multiscale simulation. Molecules 28, 4786 (2023). https://doi.org/10.3390/molecules28124786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. V.R. Chinchamalatpure, S.A. Ghosh, and G.N. Chaudhari, Synthesis and electrical characterization of BaTiO3 thin films on Si(100). Mater. Sci. Appl. 1, 187 (2010). https://doi.org/10.4236/msa.2010.14029.

    Article  CAS  Google Scholar 

  25. K. Ma, T.S. Chung, and R.J. Good, Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. J. Polym. Sci. 36, 2327 (1998). https://doi.org/10.1002/(SICI)1099-0488(19980930)36:13%3c2327::AID-POLB8%3e3.0.CO;2-P.

    Article  CAS  Google Scholar 

  26. D.K. Owens and R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741 (1969). https://doi.org/10.1002/app.1969.070130815.

    Article  CAS  Google Scholar 

  27. D.H. Kaelble and K.C. Uy, A reinterpretation of organic liquid-polytetrafluoroethylene surface interactions. J. Adhens. 2, 50 (1970). https://doi.org/10.1080/0021846708544579.

    Article  CAS  Google Scholar 

  28. M. Vasiliev, M.N.E. Alam, K. Alameh, P. Premchander, Y.T. Lee, V.A. Kotov, and Y.P. Lee, Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content. J. Phys. D Appl. Phys. 44, 75002 (2011). https://doi.org/10.1088/0022-3727/44/7/075002.

    Article  CAS  Google Scholar 

  29. J. Kobata and K.I. Miura, Effects of Ar ion bombardment by unbalanced magnetron sputtering on mechanical and thermal properties of Ti–Cu–Zr–Ni–Hf–Si thin film metallic glass. Mater. Des. 111, 271 (2016). https://doi.org/10.1016/j.matdes.2016.09.005.

    Article  CAS  Google Scholar 

  30. M.S. Reis, R.M. Rubinger, N.A. Sobolev, M.A. Valente, K. Yamada, K. Sato, Y. Todate, A. Bouravleuv, P.J.V. Ranke, and S. Gama, Influence of the strong magnetocrystalline anisotropy on the magnetocaloric properties of MnP single crystal. Phys. Rev. B 77, 104439 (2008). https://doi.org/10.1103/PhysRevB.77.104439.

    Article  ADS  CAS  Google Scholar 

  31. D. Wen, J. Li, G. Gan, Y. Yang, H. Zhang, and Y. Liu, Double peaks of the permeability spectra of obliquely sputtered CoFeB amorphous films. Mater. Res. Bull. 110, 107 (2019). https://doi.org/10.1016/j.materresbull.2018.10.015.

    Article  CAS  Google Scholar 

  32. K. Wang, Z. Xu, Y. Huang, Y. Qiu, and S. Dong, Magnetic, thermal, electrical properties and crystallization kinetics of Co60Fe20B20 alloy films. Sci. China Mater. 59, 639 (2016). https://doi.org/10.1007/s11432-016-5564-2.

    Article  CAS  Google Scholar 

  33. W. Chen, R.W. Gao, L.M. Liu, M.G. Zhu, G.B. Han, H.Q. Liu, and W. Li, Effective anisotropy, exchange-coupling length and coercivity in Nd8−xRxFe87.5B4.5 (R=Dy, Sm, x=0–0.6) nanocomposite. Mater. Sci. Eng. B 110, 107 (2004). https://doi.org/10.1016/j.mseb.2004.02.012.

    Article  CAS  Google Scholar 

  34. S.Y. Yang, J.J. Chien, W.C. Wang, C.Y. Yu, N.S. Hing, H.E. Hong, C.Y. Hong, H.C. Yang, C.F. Chang, and H.Y. Lin, Magnetic nanoparticles for high-sensitivity detection on nucleic acids via superconducting-quantum-interference-device-based immunomagnetic reduction assay. J. Magn. Magn. Mater. 323, 681 (2011). https://doi.org/10.1016/j.jmmm.2010.10.011.

    Article  ADS  CAS  Google Scholar 

  35. W. Yang, J. Liu, X. Yu, G. Wang, Z. Zheng, J. Guo, D. Chen, Z. Qiu, and D. Zeng, The preparation of high saturation magnetization and low coercivity feco soft magnetic thin films via controlling the thickness and deposition temperature. Materials 15, 7191 (2022). https://doi.org/10.3390/ma15207191.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. L. Rohman, A. Arkundato, Y.T. Mulyani, and D. Djuhana, Magnetic susceptibility and curie temperature of Co1-xFex alloy nanocube and nanosphere using micromagnetic simulation. J. Phys. Conf. Ser. 1825, 012003 (2021). https://doi.org/10.1088/1742-6596/1825/1/012003.

    Article  CAS  Google Scholar 

  37. M.K. Pandey and A.K. Kar, Effect of annealing temperature on the magnetic domain structure and surface mechanical properties of Ni–C composite thin films: magnetic and lateral force microscopy, and force-distance spectroscopy. Mater. Lett. 301, 130295 (2021). https://doi.org/10.1016/j.matlet.2021.130295.

    Article  CAS  Google Scholar 

  38. T.T.B. Lan and A.A.C. Sun, Magnetic properties and surface morphology of Pr-Fe-B thicker films at high annealing temperature. J. Magn. Magn. Mater. 564, 170086 (2022). https://doi.org/10.1016/j.jmmm.2022.170086.

    Article  CAS  Google Scholar 

  39. G. Pookat, H. Thomas, S. Thomas, S.H.A. Harthi, L. Raghavan, I.A.A. Omari, D. Sakthikumar, R.V. Ramanujan, and M.R. Anantharaman, Evolution of structural and magnetic properties of Co–Fe based metallic glass thin films with thermal annealing. Surf. Coat. Technol. 236, 246 (2013). https://doi.org/10.1016/j.surfcoat.2013.09.055.

    Article  CAS  Google Scholar 

  40. C. Hu, C. He, X. Gan, X. Wan, F. Hu, W. Zhou, H. Wang, and K. Wu, Probing the impact of grain interior and grain boundaries on the mechanical behavior of a high-Mn austenitic steel. J. Mater. Res. Technol. 21, 5098 (2022). https://doi.org/10.1016/j.jmrt.2022.11.085.

    Article  CAS  Google Scholar 

  41. N. Hasani, M.H. Ghoncheh, R.M. Kindermann, H. Pirgazi, M. Sanjari, S. Tamimi, S. Shakerin, L.A.I. Kestens, M.J. Roy, and M. Mohammadi, Dislocations mobility in superalloy-steel hybrid components produced using wire arc additive manufacturing. Mater. Des. 220, 110899 (2022). https://doi.org/10.1016/j.matdes.2022.110899.

    Article  CAS  Google Scholar 

  42. P. Jenei, C. Kádár, G. Han, P.T. Huang, H. Choe, and J. Gubicza, Annealing-induced changes in the microstructure and mechanical response of a Cu nanofoam processed by dealloying. Metals 10, 1128 (2020). https://doi.org/10.3390/met10091128.

    Article  Google Scholar 

  43. W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998). https://doi.org/10.1016/S0022-5096(97)00086-0.

    Article  ADS  CAS  Google Scholar 

  44. Q. Zhou, Y. Ren, Y. Du, D. Hua, and W. Han, Cracking and toughening mechanisms in nanoscale metallic multilayer films: a brief review. Appl. Sci. 8, 1821 (2018). https://doi.org/10.3390/app8101821.

    Article  CAS  Google Scholar 

  45. X. Li and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48, 11 (2002). https://doi.org/10.1016/S1044-5803(02)00192-4.

    Article  CAS  Google Scholar 

  46. R. Venkatraman and J.C. Bravman, Separation of film thickness and grain boundary strengthening effects in Al thin films on Si. J. Mater. Res. 7, 2040 (1992). https://doi.org/10.1557/JMR.1992.2040.

    Article  ADS  CAS  Google Scholar 

  47. D. Beegan and M.T. Laugier, Application of composite hardness models to copper thin film hardness measurement. Surf. Coat. Technol. 199, 32 (2005). https://doi.org/10.1016/j.surfcoat.2005.04.014.

    Article  CAS  Google Scholar 

  48. C. Walter, T. Antretter, R. Daniel, and C. Mittere, Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters. Surf. Coat. Technol. 202, 1103 (2007). https://doi.org/10.1016/j.surfcoat.2007.07.038.

    Article  CAS  Google Scholar 

  49. O.J.Z. Hurtado, V.C.D.G. Tiralongo, and M.C.C. Aguirre, Effect of surface hardness and roughness produced by turning on the torsion mechanical properties of annealed AISI 1020 steel. Rev. Fac. Ing. 84, 55 (2017). https://doi.org/10.17533/udea.redin.n84a07.

    Article  CAS  Google Scholar 

  50. J.W. Song and L.W. Fan, Understanding the effects of surface roughness on the temperature and pressure relevancy of water contact angles. Colloids Surf. 656, 130391 (2023). https://doi.org/10.1016/j.colsurfa.2022.130391.

    Article  CAS  Google Scholar 

  51. D.R. Absolom, K. Eom, E.I.V. Butler, H.A. Hamza, and A.W. Neumann, Surface properties of coal particles in aqueous media II. Adhesion of coal particles to polymeric substrates. Colloids Surf. 17, 143 (1986). https://doi.org/10.1016/0166-6622(86)80242-6.

    Article  CAS  Google Scholar 

  52. R. Laukemper, T. Becker, and M. Jekle, Surface energy of food contact materials and its relation to wheat dough adhesion. Food Bioproc. Tech. 14, 1142 (2021). https://doi.org/10.1007/s11947-021-02625-y.

    Article  CAS  Google Scholar 

  53. M.S. Islsm, L. Tong, and P.J. Falzon, Influence of metal surface preparation on its surface profile, contact angle, surface energy and adhesion with glass fibre prepreg. Int. J. Adhes. Adhes. 51, 32 (2014). https://doi.org/10.1016/S0143-7496(14)00081-5.

    Article  Google Scholar 

  54. B. Giroire, M. Ali Ahmad, G. Aubert, L.T. Gay, D. Michau, J.J. Watkins, C. Aymonier, and A.P. Quintin, A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques. Thin Solid Films 643, 53 (2017). https://doi.org/10.1016/j.tsf.2017.09.002.

    Article  ADS  CAS  Google Scholar 

  55. T. Grudniewski and E. Michaluk, Research on the possibility of controlling the growth of thin copper layers deposited by DC magnetron sputtering. Heliyon 9, e14936 (2023). https://doi.org/10.1016/j.heliyon.2023.e14936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. H. Marom and M. Eizenberg, The effect of surface roughness on the resistivity increase in nanometric dimensions. J. Appl. Phy. 99, 123705 (2006). https://doi.org/10.1063/1.2204349.

    Article  ADS  CAS  Google Scholar 

  57. M.Z. Butt, D. Ali, M.U. Tanveer, and S. Naseem, Surface roughness and electrical resistivity of high-purity zinc irradiated with nanosecond visible laser pulses. Appl. Sur. Sci. 305, 466 (2014). https://doi.org/10.1016/j.apsusc.2014.03.114.

    Article  ADS  CAS  Google Scholar 

  58. Y. Ke, F. Zahid, V. Timoshevskii, K. Xia, D. Gall, and H. Guo, Resistivity of thin Cu films with surface roughness. Phy. Rev. B 79, 155406 (2009). https://doi.org/10.1103/PhysRevB.80.115409.

    Article  ADS  CAS  Google Scholar 

  59. A. Javidjam, M.H. Hekmatshoar, L. Hedayatifar, and S.N.K. Abad, Effect of surface roughness on electrical conductivity and hardness of silver plated copper. Mater. Res. Express 6, 036407 (2018). https://doi.org/10.1088/2053-1591/aaf4c5.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was assisted by the National Yunlin University of Science and Technology (113T01).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W-JL, Y-HC,Y-TC and S-HL; methodology, Y-TC, Y-HC, C-CL and P-LC; validation, formal analysis, Y-TC, C-CL and P-LC; investigation, Y-TC and W-JL; resources, C-CC; writing—original draft preparation, Y-TC; writing—review and editing, Y-TC and W-JL; supervision, Y-TC and Y-HC; project administration, Y-TC and S-HL; funding acquisition, Y-HC and C-CC All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yuan-Tsung Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WJ., Chang, YH., Chiang, CC. et al. Effect of Surface Roughness on the Magnetism, Nano-indentation, Surface Energy, and Electrical Properties of Co60Fe20Dy20 Films on Si (100) Substrate. J. Electron. Mater. 53, 1752–1762 (2024). https://doi.org/10.1007/s11664-023-10904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10904-x

Keywords

Navigation