Abstract
The effective one-step microwave-assisted hydrothermal method was adapted for the preparation of pure and Er-doped TiO2 nanomaterials. The ultimate goal of synthesizing multiphase nanomaterials was accomplished at a 3-mol% erbium concentration. The average crystallite sizes of the prepared nanomaterials were found to be in a narrow range of 5–6.5 nm. The agglomeration was increasing in terms of dopant concentration, resulting in increased particle size of the nanomaterials. The oxygen vacancies created by the Er3+ ions played a prime role in the phase behavior and AC conductivity. In addition, these vacancies may function as trap centers to stop recombination. From the inferences, it was found that the dielectric loss factor increases with dislocation density and AC conductivity decreases with an increase in oxygen vacancies. The dielectric constant has been changed from 35.27 (pure TiO2) to 17.42 and 20.18 after the addition of 1 mol% and 3 mol% Er3+ ions, respectively.
Graphical Abstract
Similar content being viewed by others
References
M. Fernández-Garcia and J.A. Rodgriguez, Metal oxide nanoparticles (New York: Brookhaven National Laboratory (BNL), 2007).
M.S. Chavali and M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 6, 607 (2019).
C.S.S.R. Kumar, Nanostructured oxides (nanomaterials for the life sciences) (Germany: Wiley-VCH, 2009).
E. Tilahun Bekele, B.A. Gonfa, and F.K. Sabir, Use of different natural products to control growth of titanium oxide nanoparticles in green solvent emulsion, characterization, and their photocatalytic application. Bioinorg. Chem. Appl. 2021, 1 (2021).
L. Sun, J. Guan, Q. Xu, X. Yang, J. Wang, and X. Hu, Synthesis and applications of molecularly imprinted polymers modified TiO2 nanomaterials: a review. Polymers 11, 1248 (2018).
L. Vegard, LV. Results of crystal analysis—III. Lond. Edinb. Dublin Philos. Mag. J. Sci. 191, 505 (1916).
S.-D. Mo and W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B 19, 13023 (1995).
S.M. Gupta and M. Tripathi, A review of TiO2 nanoparticles. Chin. Sci. Bull. 16, 1639 (2011).
B. Roose, S. Pathak, and U. Steiner, Doping of TiO2 for sensitized solar cells. Chem. Soc. Rev. 22, 8326 (2015).
G. Li, C.P. Richter, R.L. Milot, L. Cai, C.A. Schmuttenmaer, R.H. Crabtree, G.W. Brudvig, and V.S. Batista, Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Dalton Trans. 45, 10078 (2009).
B.-M. Kim, S.-G. Rho, and C.-H. Kang, Effects of TiO2 structures in dye-sensitized solar cell. J. Nanosci. Nanotechnol. 2, 1515 (2011).
R. Verma, J. Gangwar, and A.K. Srivastava, Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 70, 44199 (2017).
S. Al itan, G. Palmisano, and C. Garlisi, Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts 2, 227 (2020).
J. Shi and X. Wang, Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst. Growth Des. 4, 949 (2011).
E. Kumar, D. Muthu Raj, S.C. Vella Durai, S. Karthiga Devi, and A. Jenufa Begam, Synthesis and structural investigations of titanium di-oxide (TiO2) nanoparticles by microwave assisted method. Int. Res. J. Eng. Technol. 9, 458 (2015).
P. Zhang, S. Yin, and T. Sato, Synthesis of high-activity TiO2 photocatalyst via environmentally friendly and novel microwave assisted hydrothermal process. Appl. Catal. B 1–2, 118 (2009).
Y.-K. Hwang, S.S. Park, J.-H. Lim, Y.S. Won, and S. Huh, Preparation of anatase/rutile mixed-phase titania nanoparticles for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 3, 2255 (2013).
A. Li, Z. Wang, H. Yin, S. Wang, P. Yan, B. Huang, X. Wang, R. Li, X. Zong, and H. Han, Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chem. Sci. 9, 6076 (2016).
J. He, Y.-E. Du, Y. Bai, J. An, X. Cai, Y. Chen, P. Wang, X. Yang, and Q. Feng, Facile formation of anatase/rutile TiO2 nanocomposites with enhanced photocatalytic activity. Molecules 16, 2996 (2019).
T.K. Yun, S.S. Park, D. Kim, J.-H. Shim, J.Y. Bae, S. Huh, and Y.S. Won, Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes. Dalton Trans. 4, 1284 (2012).
X. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 6018, 746 (2011).
G. Garcia, R. Buonsanti, E.L. Runnerstrom, R.J. Mendelsberg, A. Llordes, A. Anders, T.J. Richardson, and D.J. Milliron, Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett. 10, 4415 (2011).
R.S. Dubey, S.R. Jadkar, and A.B. Bhorde, Synthesis and characterization of various doped TiO2 nanocrystals for dye-sensitized solar cells. ACS Omega 5, 3470 (2021).
S. Singh, P. Srivastava, and L. Bahadur, Hydrothermal synthesized Nd-doped TiO2 with Anatase and Brookite phases as highly improved photoanode for dye-sensitized solar cell. Sol. Energy (2020). https://doi.org/10.1016/j.solener.2020.07.085.
K. Singh, S. Harish, J. Archana, M. Navaneethan, M. Shimomura, and Y. Hayakawa, Investigation of Gd-doped mesoporous TiO2 spheres for environmental remediation and energy applications. Appl. Surf. Sci. 489, 883 (2019).
Z. Wang, Y. Song, X. Cai, J. Zhang, T. Tang, and S. Wen, Rapid preparation of terbium-doped titanium dioxide nanoparticles and their enhanced photocatalytic performance. R. Soc. Open Sci. 10, 191077 (2019).
P. Venkatachalam, T. Kalaivani, and N. Krishnakumar, Erbium doped anatase TiO2 nanoparticles for photovoltaic applications. Opt. Quantum Electron. 9, 1 (2019).
Z. Rao, X. Xie, X. Wang, A. Mahmood, S. Tong, M. Ge, and J. Sun, Defect chemistry of Er3+-doped TiO2 and its photocatalytic activity for the degradation of flowing gas-phase VOCs. J. Phys. Chem. C 19, 12321 (2019).
V. Madurai Ramakrishnan, S. Pitchaiya, N. Muthukumarasamy, K. Kvamme, G. Rajesh, S. Agilan, A. Pugazhendhi, and D. Velauthapillai, Performance of TiO2 nanoparticles synthesized by microwave and solvothermal methods as photoanode in dye-sensitized solar cells (DSSC). Int. J. Hydrog. Energy 51, 27036 (2020).
K.J. Rao, B. Vaidhyanathan, M. Ganguli, and P.A. Ramakrishnan, Synthesis of inorganic solids using microwaves. Chem. Mater. 4, 882 (1999).
A. Pramothkumar, N. Senthilkumar, K.C. Mercy Gnana Malar, M. Meena, and I. Vetha Potheher, A comparative analysis on the dye degradation efficiency of pure Co, Ni and Mn-doped CuO nanoparticles. J. Mater. Sci. Mater. Electron. 30, 19043 (2019).
F. Fang, J. Kennedy, E. Manikandan, J. Futter, and A. Markwitz, Morphology and characterization of TiO2 nanoparticles synthesized by arc discharge. Chem. Phys. Lett. 521, 86 (2012).
A. Mehtab, J. Ahmed, S.M. Alshehri, Y. Mao, and T. Ahmad, Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective. Nanotechnology 33, 142001 (2022).
A.L. Patterson, The Scherrer formula for x-ray PARTICLE SIZE DETERMINATION. Phys. Rev. 10, 978 (1939).
M.S. Shifa, M. Khan, M. Mustaqeem, T. Munir, Z.A. Gilani, H.M. Asghar, N.U.H. Khan, M.S. Ahmed, and I. Qureshi, Structural, morphological study of neodymium substituted cobalt zinc ferrites nanoparticles synthesized via co-precipitation method. J. Ovonic Res. 1, 89 (2021).
G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953).
M.A. Ashraf, W. Peng, Y. Zare, and K.Y. Rhee, Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett. 1, 214 (2018).
O.-L. Pérez, D. Romeu, and M.J. Yacamán, The relation between dispersion and particle size on supported catalysts. J. Catal. 1, 240 (1983).
D. Avram, A.A. Patrascu, M.C. Istrate, B. Cojocaru, and C. Tiseanu, Lanthanide doped TiO2: coexistence of discrete and continuous dopant distribution in anatase phase. J. Alloys Compd. 851, 156849 (2021).
K.M. Batoo, S. Kumar, C.G. Lee, and Alimuddin, Influence of Al doping on electrical properties of Ni-Cd nano ferrites. Curr. Appl. Phys. 4, 826 (2009).
C. Rayssi, S. El Kossi, J. Dhahri, and K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 31, 17139 (2018).
N.K. Divya, P.U. Aparna, and P.P. Pradyumnan, Dielectric Properties of Er3+ Doped ZnO Nanocrystals. Adv. Mater. Phys. Chem. 08, 287 (2015).
K. Prabakar, S.K. Narayandass, and D. Mangalaraj, Dielectric properties of Cd0.6Zn0.4Te thin films. Phys. Status Solidi (a) 3, 507 (2003).
M. Goswami, S.K. Deshpande, R. Kumar, and G.P. Kothiyal, Electrical behaviour of Li2O–ZnO-SiO2 glass and glass-ceramics system. J. Phys. Chem. Solids 5, 739 (2010).
C. Fanggao, S. Guilin, F. Kun, Q. Ping, and Z. Qijun, Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J. Rare Earths 1, 273 (2006).
T. Ali, A. Ahmed, M.N. Siddique, T. Aftab, and P. Tripathi, in AIP Conference Proceedings (2018), p. 050056.
R. Singh and R.K. Ulrich, High and low dielectric constant materials. The Electrochem. Soc. Interface 2, 26 (1999).
S. Ghosh, V. Perla, and K. Mallick, The dielectric and electrical properties of Bismuth oxide nanoparticles within organic network: The effect of temperature and the role of polarons. Mater. Res. Express (2019).
Y. Wang and H. Kim, UV-curable organic–inorganic hybrid gate dielectrics for organic thin film transistors. Org. Electron. 13, 2997 (2012).
S. Halder, S. Bhuyan, and R.N.P. Choudhary, Structural dielectric and electrical characteristics of lead-free electro-ceramic: Bi(Ni2/3Ta1/3)O3. Eng. Sci. Technol. Int. J. (2019). https://doi.org/10.1016/j.jestch.2018.11.007.
M.N. Islam and A.K.M.A. Hossain, Enhancement of Néel temperature and electrical resistivity of Mn-Ni-Zn ferrites by Gd3+ substitution. J. Mater. Res. Technol. 1, 208 (2019).
M.M. Abdel-Aziz, M.A. Afifi, H. Labib, and E.G. El-Metwally, Electrical and dielectric properties of amorphous Ge1Se1.35Tl0.1 films. Acta Phys. Pol. A 98, 393 (2000).
A.E. Bekheet and N.A. Hegab, Ac conductivity and dielectric properties of Ge20Se75In5 films. Vacuum 2, 391 (2008).
F. Ullah, M. Qureshi, K. Sultana, M. Saleem, M. Elaimi, R.S. Hameed, S. Haq, H. Ismail, and S. Anwar, Structural and dielectric studies of MgAl2O4-TiO2 composites for energy storage applications. Ceram. Int. 47, 30665 (2021).
N. Raskar, D. Dake, H. Khawal, U. Deshpande, K. Asokan, and B. Dole, Development of oxygen vacancies and surface defects in Mn-doped ZnO nanoflowers for enhancing visible light photocatalytic activity. SN Appl. Sci. 8, 1 (2020).
A.K. Jonscher, The “universal” dielectric response. I. IEEE Electr. Insul. Mag. 2, 16 (1990).
N. Panda, B.N. Parida, R. Padhee, and R.N.P. Choudhary, Structural, dielectric and electrical properties of the Ba2BiNbO6 double perovskite. J. Mater. Sci. Mater. Electron. 6, 3797 (2015).
R. Jose, P. Vineetha, and M.A. Rafiq, Investigation into defect chemistry and relaxation processes in niobium doped and undoped SrBi4Ti4O15 using impedance spectroscopy. RSC Adv. 60, 34437 (2018).
A. Radoń, D. Łukowiec, M. Kremzer, J. Mikuła, and P. Włodarczyk, Electrical conduction mechanism and dielectric properties of spherical shaped Fe3O4 nanoparticles synthesized by co-precipitation method. Materials 5, 735 (2018).
A. Ladhar, M. Arous, H. Kaddami, M. Raihane, A. Kallel, M.P.F. Graça, and L.C. Costa, AC and DC electrical conductivity in natural rubber/nanofibrillated cellulose nanocomposites. J. Mol. Liq. 209, 272 (2015).
K. Suhailath and M.T. Ramesan, Theoretical and experimental studies on DC conductivity and temperature-dependent AC conductivity of poly(butyl methacrylate)/Nd-TiO2 nanocomposites. J. Thermoplast. Compos. Mater. 8, 1061 (2019).
J. Fal, A. Barylyak, K. Besaha, Y.V. Bobitski, M. Cholewa, I. Zawlik, K. Szmuc, J. Cebulski, and G. Żyła, Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO2-EG Nanofluids. Nanoscale Res. Lett. 1, 375 (2016).
M. Jebli, C. Rayssi, J. Dhahri, M. Ben Henda, H. Belmabrouk, and A. Bajahzar, Structural and morphological studies, and temperature/frequency dependence of electrical conductivity of Ba0.97La0.02Ti1−xNb4x/5O3 perovskite ceramics. RSC Adv. 38, 23664 (2021).
Acknowledgment
The authors are thankful to the Physics Research Centre, S.T. Hindu College, Nagercoil, for providing the facilities to carry out this research work.
Funding
Not applicable.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jayachithra, J.V., Elampari, K. & Meena, M. Impact of Er3+ Ions on the Structural and Dielectric Properties of TiO2 Nanomaterials. J. Electron. Mater. 53, 773–785 (2024). https://doi.org/10.1007/s11664-023-10856-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-023-10856-2