Skip to main content
Log in

The Effect of Temperature on the Electrical Resistivity of Sn-Bi Alloys

  • Topical Collection: Electronic Packaging and Interconnections 2023
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

With low liquidus temperatures, low raw material costs, and non-toxicity, Sn-Bi low-temperature solders are promising candidates for the replacement of the currently widely-used lead-free solders in situations in which process temperatures have to be reduced. Electrical resistivity is one of the most important properties of solder alloys, as one of their primary functions is to conduct electrons between the connected components. The electrical resistivity of an alloy of a given composition at a specific temperature and pressure is affected by the microstructure and the crystal structure of the phases present. For Sn-Bi solders, the solubility of Bi in Sn is highly temperature-sensitive and increases from 3 wt.% at room temperature to 21 wt.% at 139°C, the eutectic temperature of the Sn-Bi system. As the temperature increases within that interval, Bi will dissolve in Sn, while it will precipitate as the temperature decreases. The resulting significant changes in the overall microstructure and the lattice parameters of the Sn phase can be expected to affect the electrical resistivity. In this study, the electrical resistivity of hypo-eutectic Sn-37wt.%Bi and near-eutectic Sn-57wt.%Bi alloys was measured as a function of temperature and the temperature coefficient of resistance (TCR) calculated. It was found that the electrical resistivity increases linearly with increasing temperature up to 70°C, while above 80°C, a deviation from the linear relationship was observed. This deviation is attributed to the rapid dissolution of Bi in Sn at 80°C and above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. H. Kang, S.H. Rajendran, and J.P. Jung, Low melting temperature Sn-Bi solder: effect of alloying and nanoparticle addition on the microstructural, thermal, interfacial bonding, and mechanical characteristics. Metals 11(2), 364 (2021).

    Article  CAS  Google Scholar 

  2. F. Wang, H. Chen, Y. Huang, L. Liu, and Z. Zhang, Recent progress on the development of Sn–Bi based low-temperature Pb-free solders. J. Mater. Sci. Mater. Electron. 30(4), 3222 (2019).

    Article  CAS  ADS  Google Scholar 

  3. S. Cheng, C.-M. Huang, and M. Pecht, A review of lead-free solders for electronics applications. Microelectron. Reliab. 75, 77 (2017).

    Article  CAS  Google Scholar 

  4. K. Sweatman, T. Nishimura, T. Akaiwa, and P. Naraynanan. Optimizing solder alloy composition for low temperature assembly. SMTA international conference (Rosemont, IL, USA, 2019).

  5. S. Mokler, R. Aspandiar, K. Byrd, O. Chen, S. Walwadkar, K.K. Tang, M. Renavikar, and S. Sane. The application of bi-based solders for low temperature reflow to reduce cost while improving SMT yields in client computing systems. SMTA international conference (Rosemont, IL, 2016).

  6. H. Fu, R. Aspandiar, J. Chen, S. Cheng, Q. Chen, R. Coyle, S. Feng, B. Hardin, M. Krmpotich, S. Mokler, J. Radhakrishnan, M. Ribas, B. Sandy-Smith, K.K. Tang, G. Wu, A. Zhang, and W. Zhen. Inemi project on process development of BISN-based low temperature solder pastes—Part II: characterization of mixed alloy BGA solder joints. 2018 Pan Pacific Microelectronics Symposium (Pan Pacific, 2018).

  7. Inemi. Bisn-based low-temperature soldering process and reliability. Available from: http://www.inemi.org/bi-sn_based_low_temp.

  8. Q.C. Hao, X.F. Tan, Q.F. Gu, K. Sweatman, S.D. Mcdonald, and K. Nogita, The effects of temperature and solute diffusion on volume change in Sn-Bi solder alloys. JOM 74(4), 1739 (2022).

    Article  CAS  ADS  Google Scholar 

  9. B.-J. Lee, C.-S. Oh, and J.-H. Shim, Thermodynamic assessments of the Sn-In and Sn-Bi binary systems. J. Electron. Mater. 25(6), 983 (1996).

    Article  CAS  ADS  Google Scholar 

  10. X.F. Tan, Q. Hao, Q. Gu, S.D. Mcdonald, K. Sweatman, M. Bermingham, and K. Nogita, The effects of Sb on the lattice and microstructure characteristics of hypo-eutectic Sn-Bi alloys. Mater Charact 201, 112934 (2023).

    Article  CAS  Google Scholar 

  11. X.F. Tan, J. Zhou, S.D. Mcdonald, M. Ikeda, and K. Nogita. Evolution of the Sn-Bi solder microstructure vs. temperature–an in-situ scanning electron microscopy study. in International conference on electronics packaging (Kumamoto, Japan, 2023).

  12. X. Ye, L. Tao, S.D. Mcdonald, X.F. Tan, K. Sweatman, and K. Nogita. The effects of room temperature ageing and solution treatment on mechanical properties of Sn-37wt.%Bi and Sn-57wt.%Bi. in international conference on electronics packaging (Kumamoto, Japan, 2023).

  13. I.C. Ezenwa, R.A. Secco, W. Yong, M. Pozzo, and D. Alfè, Electrical resistivity of solid and liquid Cu up to 5 gpa: decrease along the melting boundary. J. Phys. Chem. Sol. 110, 386 (2017).

    Article  CAS  ADS  Google Scholar 

  14. D.S. Mclachlan, M. Blaszkiewicz, and R.E. Newnham, Electrical resistivity of composites. J. Am. Ceram. Soc. 73(8), 2187 (1990).

    Article  CAS  Google Scholar 

  15. D.S. Mclachlan, An equation for the conductivity of binary mixtures with anisotropic grain structures. J. Phys. C Solid State Phys. 20(7), 865 (1987).

    Article  ADS  Google Scholar 

  16. Y.-A. Shen, S. Zhou, J. Li, K.N. Tu, and H. Nishikawa, Thermomigration induced microstructure and property changes in Sn-58Bi solders. Mater. Des. 166, 107619 (2019).

    Article  CAS  Google Scholar 

  17. F. Hadian, J. Flores, and E. Cotts, The variation of the electrical resistance and microstructure of snBi based solder joints with current stressing. JOM 74(5), 2139 (2022).

    Article  CAS  ADS  Google Scholar 

  18. J. Sun, G. Xu, F. Guo, Z. Xia, Y. Lei, Y. Shi, X. Li, and X. Wang, Effects of electromigration on resistance changes in eutectic snbi solder joints. J. Mater. Sci. 46(10), 3544 (2011).

    Article  CAS  ADS  Google Scholar 

  19. F. Guo, Q. Liu, L. Ma, and Y. Zuo, Diffusion behavior of Sn atoms in Sn58Bi solder joints under the coupling effect of thermomigration and electromigration. J. Mater. Res. 31(12), 1793 (2016).

    Article  CAS  ADS  Google Scholar 

  20. The engineering toolbox, resistivity and conductivity-temperature coefficients common materials. Available from: https://www.engineeringtoolbox.com/resistivity-conductivity-d_418.html.

  21. T. Nishimura, Lead-free solder alloy and solder joint. (2021). (JP2021162331A).

  22. W.J. Boettinger, C.A. Handwerker, B. Newbury, T.Y. Pan, and J.M. Nicholson, Mechanism of fillet lifting in Sn-Bi alloys. J. Electron. Mater. 31(5), 545 (2002).

    Article  CAS  ADS  Google Scholar 

  23. S.A. Belyakov and C.M. Gourlay, Recommended values for the βsn solidus line in Sn-Bi alloys. Thermochim. Acta 654, 65 (2017).

    Article  CAS  Google Scholar 

  24. J.A. Wu, A. Luktuke, and N. Chawla, Surface precipitation and growth of bismuth particles in Sn-Ag-Cu-Bi solder joints. J. Electron. Mater. 52(2), 801 (2022).

    Article  ADS  Google Scholar 

  25. E. Çadırlı, H. Kaya, A. Gümüs, and I. Yılmazer, Temperature-dependence of electrical resistivity of Cd-Sn, Bi-Sn, and Al-Si eutectic and Al-3wt.%Si hypo-eutectic alloys. J. Mater. Eng. Perform. 15(4), 490 (2006).

    Article  Google Scholar 

  26. V.E. Sidorov, S.A. Uporov, D.A. Yagodin, K.I. Grushevskii, N.S. Uporova, and D.V. Samokhvalov, Density, electrical resistivity and magnetic susceptibility of Sn-Bi alloys at high temperatures. High Temp. 50(3), 348 (2012).

    Article  CAS  Google Scholar 

  27. M. Li, H. Geng, F. Long, M. Zuo, R. Liu, and S. Lu, Discontinuous structural phase transition of Sn–Bi melts. J. Mol. Liq. 204, 27 (2015).

    Article  CAS  Google Scholar 

  28. J.C. Slater, Atomic radii in crystals. J. Chem. Phys. 41(10), 3199 (1964).

    Article  CAS  ADS  Google Scholar 

  29. G. Langelandsvik, Optimization of electrical conductivity in screw extruded wires. Norwegian University of Science and Technology. Master (2017).

  30. R.E. Hummel, Electrical conduction in metals and alloys, Electronic properties of materials. (Berlin: Springer, 2001), p. 77.

    Chapter  Google Scholar 

  31. Deutsches Institut Fur Normung E.V. (German National Standard), Resistance alloys. DIN 17471 (1983).

  32. S.K. Case and J.E. Gueths, Anisotropy of the temperature-dependent resistivity of tin between 8 and 300 °K. Phys. Rev. B 2(10), 3843 (1970).

    Article  ADS  Google Scholar 

  33. T.-K. Lee, T.R. Bieler, C.-U. Kim, and H. Ma, Fundamentals of lead-free solder interconnect technology (UK: Springer, 2015). https://doi.org/10.1007/978-1-4614-9266-5.

    Book  Google Scholar 

  34. Electronics Notes, Temperature coefficient of resistance. Available from: https://www.electronics-notes.com/articles/basic_concepts/resistance/resistance-resistivity-temperature-coefficient.php.

  35. W.B. Pietenpol and H.A. Miley, Electrical resistivities and temperature coefficients of lead, tin, zinc and bismuth in the solid and liquid states. Phys. Rev. 34(12), 1588 (1929).

    Article  CAS  ADS  Google Scholar 

  36. S. Shafeie, S. Guo, P. Erhart, Q. Hu, and A. Palmqvist, balancing scattering channels: a panoscopic approach toward zero temperature coefficient of resistance using high-entropy alloys. Adv. Mater. 31(2), e1805392 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Mr. Rodney Young from Masters & Young Pty Ltd and Mr. Blair Knight from The University of Queensland for their support on the electrical resistance measurements. The authors would like to acknowledge Dr. Qinfen Gu at the Australian Synchrotron powder diffraction beamline for the support on the in-situ PXRD experiment.

Funding

This work was supported by The University of Queensland, Australia, Knowledge Exchange & Translation fund [2021002690] with Nihon Superior Co., Ltd. and Masters & Young Pty Ltd.; UQ-Nihon Superior Co., Ltd, Japan, collaborative research Grants [2016001895, 2021002341]; Australian Research Council, Australia, Discovery project [DP200101949]; ANSTO Australian Synchrotron beamtime [Grant Number AS211/PD/16842].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin F. Tan.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X.F., Hao, Q., Zhou, J. et al. The Effect of Temperature on the Electrical Resistivity of Sn-Bi Alloys. J. Electron. Mater. 53, 1183–1191 (2024). https://doi.org/10.1007/s11664-023-10849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10849-1

Keywords

Navigation