Skip to main content
Log in

Green-Mediated Synthesis of Co3O4 Nanostructures for Efficient Oxygen Evolution Reaction and Supercapacitor Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A simple, scalable, and environmentally friendly process was demonstrated for the synthesis of Co3O4 nanostructures using lemon juice and hydrothermal chemistry. The reducing, capping, and stabilizing agents in lemon juice result in improved performance in oxygen evolution reactions and supercapacitors due to their positive effects on morphology, crystal size, and surface defects. Several techniques were used to characterize Co3O4 nanostructures grown with different quantities of lemon juice, including field emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. The results show that lemon juice alters the size and homogeneity of Co3O4 nanostructures as well as surface defects like oxygen vacancies and interstitial Co. A sample prepared with 4 mL of lemon juice (sample 1) performed best, demonstrating an overpotential of 260 mV at 10 mA cm−2 and good stability at 20 mA cm−2 for 40 h. With the prepared nanomaterial, supercapacitors were developed with a specific capacitance of 398 F g−1 at 0.8 A g−1, a specific capacity retention percentage of 97%, a high energy density of 9.5 Wh kg−1, and excellent stability during 880 galvanic charge and discharge cycles. Co3O4 nanostructures have experienced dramatic improvements in electrochemical performance as a result of morphological changes and oxygen vacancy concentrations on their surfaces. By reducing, capping, and stabilizing lemon juice, a new generation of electroactive electrodes have been developed for storage and conversion of energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data and Code Availability

The authors declare that the data supporting the findings of this study are available within the paper and there is no code associated to the data presented in the manuscript.

References

  1. E. De Cian and W. Ian Sue, Global energy consumption in a warming climate. Environ. Resour. Econ. 72, 365 (2019).

    Article  Google Scholar 

  2. F. Martins, C. Felgueiras, M. Smitkova, and N. Caetano, Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12, 964 (2019).

    Article  CAS  Google Scholar 

  3. S. Kumar, A. Tahira, M. Emo, B. Vigolo, A. Infantes-Molin, A.M. Alotaibi, S.F. Shaikh, A. Nafady, and Z.H. Ibupoto, Grapefruit juice containing rich hydroxyl and oxygenated groups capable of transforming 1D structure of NiCo2O4 into 0D with excessive surface vacancies for promising energy conversion and storage applications. J. Energy Storage 68, 107708 (2023).

    Article  Google Scholar 

  4. N. Abas, A. Kalair, and N. Khan, Review of fossil fuels and future energy technologies. Futures 69, 31 (2015).

    Article  Google Scholar 

  5. M.Z. Jacobson and M.A. Delucchi, Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39, 1154 (2011).

    Article  CAS  Google Scholar 

  6. J. Scheffran, M. Felkers, and R. Froese, Economic growth and the global energy demand, in Green Energy to Sustainability: Strategies for Global Industries (2020). p. 1.

  7. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, and R. Gorini, The role of renewable energy in the global energy transformation. Energy Strategy Rev. 24, 38 (2019).

    Article  Google Scholar 

  8. M.D. Simonova and V.E. Zakharov, Statistical analysis of development trends in global renewable energy. MGIMO Rev. Int. Relat. 3, 214 (2016).

    Google Scholar 

  9. N.L. Panwar, S.C. Kaushik, and S. Kothari, Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15, 1513 (2011).

    Article  Google Scholar 

  10. A. Kalair, N. Abas, M.S. Saleem, A.R. Kalair, and N. Khan, Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 3, 135 (2021).

    Article  Google Scholar 

  11. S. Chen, T. Takata, and K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 1 (2017).

    Article  CAS  Google Scholar 

  12. X. Xiao, L. Yang, W. Sun, Y. Chen, H. Yu, K. Li, B. Jia, L. Zhang, and T. Ma, Electrocatalytic water splitting: from harsh and mild conditions to natural seawater. Small 18, 2105830 (2022).

    Article  CAS  Google Scholar 

  13. R. Muhammad, M. Rikza, I. Muneeb, I. Gillani, T. Bilal, N. Khalid, Y. Aqsa, and M. Aamir, J. Inorg. Organomet. Polym. Mater. 30, 3837 (2020).

    Article  Google Scholar 

  14. P. Hota, A. Das, and D.K. Maiti, A short review on generation of green fuel hydrogen through water splitting. Int. J. Hydrog. Energy 48, 523 (2023).

    Article  CAS  Google Scholar 

  15. S. Zhai, J. Rojas, N. Ahlborg, K. Lim, M.F. Toney, H. Jin, W.C. Chueh, and A. Majumdar, The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Energy Environ. Sci. 11, 2172 (2018).

    Article  CAS  Google Scholar 

  16. C. Acar, I. Dincer, and G.F. Naterer, Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 40, 1449 (2016).

    Article  CAS  Google Scholar 

  17. P.F. Liu, H. Yin, H.Q. Fu, M.Y. Zu, H.G. Yang, and H. Zhao, Activation strategies of water-splitting electrocatalysts. J. Mater. Chem. A 8, 10096 (2020).

    Article  CAS  Google Scholar 

  18. C. Guo, Y. Shi, S. Lu, Y. Yu, and B. Zhang, Amorphous nanomaterials in electrocatalytic water splitting. Chin. J. Catal. 42, 1287 (2021).

    Article  CAS  Google Scholar 

  19. X. Peng, C. Pi, X. Zhang, S. Li, K. Huo, and P.K. Chu, Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain. Energy Fuels 3, 366 (2019).

    Article  CAS  Google Scholar 

  20. B. You, M.T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng, and H. Li, Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31, 1807001 (2019).

    Article  Google Scholar 

  21. J. Yan, Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014).

    Article  Google Scholar 

  22. K. Sharma, A. Arora, and S.K. Tripathi, Review of supercapacitors: materials and devices. J. Energy Storage 21, 801 (2019).

    Article  CAS  Google Scholar 

  23. J. Gou, Y. Du, S. Xie, Y. Liu, and X. Kong, Easily-prepared bimetallic metal phosphides as high-performance electrode materials for asymmetric supercapacitor and hydrogen evolution reaction. Int. J. Hydrog. Energy 44, 27214 (2019).

    Article  CAS  Google Scholar 

  24. V. Raman, N.V. Mohan, B. Balakrishnan, R. Rajmohan, V. Rajangam, A. Selvaraj, and H.J. Kim, Porous shiitake mushroom carbon composite with NiCo2O4 nanorod electrochemical characteristics for efficient supercapacitor applications. Ionics 26, 345 (2020).

    Article  CAS  Google Scholar 

  25. J. Gou, S. Xie, and B. Xu, Preparation of Ni-Co sulfides for high-performance supercapacitor application. Ionics 26, 337 (2020).

    Article  CAS  Google Scholar 

  26. H. Fu, Y. Liu, L. Chen, Y. Shi, W. Kong, J. Hou, and X. Guo, Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochim. Acta 296, 719 (2019).

    Article  CAS  Google Scholar 

  27. T. Liu and P. Diao, Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 13, 3299 (2020).

    Article  CAS  Google Scholar 

  28. L. Kumar, M. Chauhan, P.K. Boruah, M.R. Das, S.A. Hashmi, and S. Deka, Coral-shaped bifunctional NiCo2O4 nanostructure: a material for highly efficient electrochemical charge storage and electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 3, 6793 (2020).

    Article  CAS  Google Scholar 

  29. Y.H. Chiu, T.H. Lai, M.Y. Kuo, P.Y. Hsieh, and Y.J. Hsu, Photoelectrochemical cells for solar hydrogen production: challenges and opportunities. APL Mater. 7, 080901 (2019).

    Article  Google Scholar 

  30. P.Y. Hsieh, J.Y. Wu, T.F.M. Chang, C.Y. Chen, M. Sone, and Y.J. Hsu, Near infrared-driven photoelectrochemical water splitting: review and future prospects. Arab. J. Chem. 13, 8372 (2020).

    Article  CAS  Google Scholar 

  31. N.A. Burton, R.V. Padilla, A. Rose, and H. Habibullah, Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy Rev. 135, 110255 (2021).

    Article  CAS  Google Scholar 

  32. Z. Ma, L. Witteman, J.A. Wrubel, and G. Bender, A comprehensive modeling method for proton exchange membrane electrolyzer development. Int. J. Hydrog. Energy 46, 17627 (2021).

    Article  CAS  Google Scholar 

  33. G. Schiller, M. Lang, P. Szabo, N. Monnerie, H. von Storch, J. Reinhold, and P. Sundarraj, Solar heat integrated solid oxide steam electrolysis for highly efficient hydrogen production. J. Power. Sources 416, 72 (2019).

    Article  CAS  Google Scholar 

  34. S.E. Hosseini and M.A. Wahid, Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. Int. J. Energy Res. 44, 4110 (2020).

    Article  Google Scholar 

  35. C.G. Morales-Guio, L.A. Stern, and X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555 (2014).

    Article  CAS  Google Scholar 

  36. N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337 (2017).

    Article  CAS  Google Scholar 

  37. Y. Li, H. Wang, C. Priest, S. Li, P. Xu, and G. Wu, Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 33, 2000381 (2021).

    Article  CAS  Google Scholar 

  38. C.Y. Ahn, J.E. Park, S. Kim, O.H. Kim, W. Hwang, M. Her, and Y.E. Sung, Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half-and full-cells. Chem. Rev. 121, 15075 (2021).

    Article  CAS  Google Scholar 

  39. L. She, G. Zhao, T. Ma, J. Chen, W. Sun, and H. Pan, On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 32, 2108465 (2022).

    Article  CAS  Google Scholar 

  40. Y. Li, H. Wang, C. Priest, S. Li, P. Xu, and G. Wu, Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. ACS Nano 12, 8597 (2018).

    Google Scholar 

  41. P. Gao, Y. Zeng, P. Tang, Z. Wang, J. Yang, A. Hu, and J. Liu, Understanding the synergistic effects and structural evolution of Co(OH)2 and Co3O4 toward boosting electrochemical charge storage. Adv. Funct. Mater. 32, 2108644 (2022).

    Article  CAS  Google Scholar 

  42. Z. Xiao, S. Luo, W. Duan, X. Zhang, S. Han, Y. Liu, and S. Lin, Doughty-electronegative heteroatom-induced defective MoS2 for the hydrogen evolution reaction. Front. Chem. 10, 1064752 (2022).

    Article  CAS  Google Scholar 

  43. A. Younis, D. Chu, X. Lin, J. Lee, and S. Li, Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition. Nanoscale Res. Lett. 8, 1 (2013).

    Article  Google Scholar 

  44. Z. Xiao, Y.C. Huang, C.L. Dong, C. Xie, Z. Liu, S. Du, and S. Wang, Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 142, 12087 (2020).

    Article  CAS  Google Scholar 

  45. Z. Wang, W. Wang, L. Zhang, and D. Jiang, Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature. Catal. Sci. Technol. 6, 3845 (2016).

    Article  CAS  Google Scholar 

  46. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L.A. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, and H. Chen, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821–826 (2013).

    Article  CAS  Google Scholar 

  47. R. Gao, Z. Li, X. Zhang, J. Zhang, Z. Hu, and X. Liu, Carbon-dotted defective CoO with oxygen vacancies: a synergetic design of bifunctional cathode catalyst for Li-O2 batteries. ACS Catal. 6, 400 (2016).

    Article  CAS  Google Scholar 

  48. D. Yan, R. Chen, Z. Xiao, and S. Wang, Engineering the electronic structure of Co3O4 by carbon-doping for efficient overall water splitting. Electrochim. Acta 303, 316 (2019).

    Article  CAS  Google Scholar 

  49. A. Sivanantham, P. Ganesan, and S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26, 4661 (2016).

    Article  CAS  Google Scholar 

  50. M. Wang, Z. Dang, M. Prato, U. Petralanda, I. Infante, D.V. Shinde, and L. Manna, Ruthenium-decorated cobalt selenide nanocrystals for hydrogen evolution. ACS Appl. Nano Mater. 2, 5695 (2019).

    Article  CAS  Google Scholar 

  51. X. Zhang, Q. Liu, Z. Yan, S. Liu, and E. Wang, CuO/Co3O4 heterostructures with carbon nanotubes composites as ORR/OER electrocatalysts for Zn-air batteries. J. Energy Storage 66, 107485 (2023).

    Article  Google Scholar 

  52. S. Xiong, S. Weng, Y. Tang, L. Qian, Y. Xu, X. Li, and J. Chen, Mo-doped Co3O4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting. J. Colloid Interface Sci. 602, 355 (2021).

    Article  CAS  Google Scholar 

  53. S. Kumar, A. Tahira, A.L. Bhatti, M.A. Bhatti, R.H. Mari, N.M. Shaikh, and Z.H. Ibupoto, Transforming NiCo2O4 nanorods into nanoparticles using citrus lemon juice enhancing electrochemical properties for asymmetric supercapacitor and water oxidation. RSC Adv. 13, 18614 (2023).

    Article  CAS  Google Scholar 

  54. W. Ye, Y. Zhang, J. Fan, P. Shi, Y. Min, and Q. Xu, Rod-like nickel doped Co3Se4/reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions. Nanoscale 13, 3698 (2021).

    Article  CAS  Google Scholar 

  55. Y. Yang, H. Fei, G. Ruan, and J.M. Tour, Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 27, 3175 (2015).

    Article  CAS  Google Scholar 

  56. J. Wang, H.X. Zhong, Z.L. Wang, F.L. Meng, and X.B. Zhang, Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10, 2342 (2016).

    Article  CAS  Google Scholar 

  57. R. Chen, H.Y. Wang, J. Miao, H. Yang, and B. Liu, A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires. Nano Energy 11, 333 (2015).

    Article  CAS  Google Scholar 

  58. P.R. Vandamar, K.E. Ranjith, T. Pushpagiri, A. Steephen, N. Arunadevi, and S. Baskoutas, Lemon juice (natural fuel) assisted synthesis of MgO nanorods for LPG gas sensor applications. Solid State Commun. 325, 114161 (2021).

    Article  Google Scholar 

  59. P.R. Vandamar, K.E. Ranjith, M.G. Sumithra, N. Arunadevi, R.C. Sharmila, M.A. Munshi, G.A.M. Mersal, and N.M. El-Metwaly, Natural citric acid (lemon juice) assisted synthesis of ZnO nanostructures: evaluation of phase composition, morphology, optical and thermal properties. Ceram. Intern. 47, 23110 (2021).

    Article  Google Scholar 

  60. D. Lin, Y. Zheng, X. Feng, Y. You, E. Wu, Y. Luo, and Q. Chen, Highly stable Co3O4 nanoparticles-assembled microrods derived from MOF for efficient total propane oxidation. J. Mater. Sci. 55, 5190 (2020).

    Article  CAS  Google Scholar 

  61. K. Xiao, Y. Wang, P. Wu, L. Hou, and Z.Q. Liu, Activating lattice oxygen in spinel ZnCo2O4 through filling oxygen vacancies with fluorine for electrocatalytic oxygen evolution. Angew. Chem. 135, e202301408 (2023).

    Article  Google Scholar 

  62. J. Li, F. Xu, K. Wang, J. He, and Z. Xu, Anion-tuning of cobalt-based chalcogenides for efficient oxygen evolution in weakly alkaline seawater. Chem. Eng. Sci. 267, 118366 (2023).

    Article  CAS  Google Scholar 

  63. X. Li, K. Zheng, and C. Xu, Engineering sulfur vacancies in spinel-phase Co3S4 for effective electrocatalysis of the oxygen evolution reaction. ACS Omega 7, 12430 (2022).

    Article  CAS  Google Scholar 

  64. J. Bejar, L. Álvarez-Contreras, and L.G. Arriaga, Zn-air battery operated with a 3DOM trimetallic spinel (Mn0.5Ni0.5Co2O4) as the oxygen electrode. Electrochim. Acta 391, 138900 (2021).

    Article  CAS  Google Scholar 

  65. Y. Wang, Y.Q. Zhu, and H. Duan, Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS Catal. 12, 12432 (2022).

    Article  CAS  Google Scholar 

  66. N. Zhang, X. Feng, and Y. Chai, Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11, 4066 (2020).

    Article  CAS  Google Scholar 

  67. M. Rafei, X. Wu, A. Piñeiro-Garcia, and E. Gracia-Espino, Non-stoichiometric NiFeMo solid solutions; tuning the hydrogen adsorption energy via molybdenum incorporation. Adv. Mater. Interfaces 9, 2201214 (2022).

    Article  CAS  Google Scholar 

  68. Y. Yan, Q. Ma, F. Cui, and T. Cui, Carbon onions coated Ni/NiO nanoparticles as catalysts for alkaline hydrogen evolution reaction. Electrochim. Acta 430, 141090 (2022).

    Article  CAS  Google Scholar 

  69. Z.Y. Tian, X.Q. Han, and Z.G. Han, Bio-inspired FeMo2S4 microspheres as bifunctional electrocatalysts for boosting hydrogen oxidation/evolution reactions in alkaline solution. ACS Appl. Mater. Interfaces 15, 11853 (2023).

    Article  CAS  Google Scholar 

  70. W. Liu, W. Tan, H. He, and Y. Yang, One-step electrodeposition of Ni-Ce-Pr-Ho/NF as an efficient electrocatalyst for hydrogen evolution reaction in alkaline medium. Energy 250, 123831 (2022).

    Article  CAS  Google Scholar 

  71. H.H. Zou, W.Q. Li, and C.T. He, Disclosing the active integration structure and robustness of a pseudo-tri-component electrocatalyst toward alkaline hydrogen evolution. J. Energy Chem. 72, 210 (2022).

    Article  CAS  Google Scholar 

  72. Y. Wang, S. Yun, and T. Yang, Defect engineering tuning electron structure of biphasic tungsten-based chalcogenide heterostructure improves its catalytic activity for hydrogen evolution and triiodide reduction. J. Colloid Interface Sci. 625, 800 (2022).

    Article  CAS  Google Scholar 

  73. J.O.M. Bockris and T. Otagawa, Mechanism of oxygen evolution on perovskites. J. Phys. Chem. 87, 2960 (2002).

    Article  Google Scholar 

  74. E. Zhuravlyova, L. Iglesias-Rubianes, A. Pakes, P. Skeldon, G.E. Thompson, X. Zhou, T. Quance, M.J. Graham, H. Habazaki, and K. Shimizu, Oxygen evolution within barrier oxide films. Corros. Sci. 44, 2153 (2002).

    Article  CAS  Google Scholar 

  75. A. Kobussen and G. Broers, The oxygen evolution on La0.5Ba0.5CoO3: theoretical impedance behaviour for a multi-step mechanism involving two adsorbates. J. Electroanal. Chem. Interfacial Electrochem. 126, 221 (1981).

    Article  CAS  Google Scholar 

  76. W. O’Grady, C. Iwakura, J. Huang, E. Yeager, and M. Breiter, in Proceedings of the Symposium on Electrocatalysis (The Electrochemical Society, Pennington, 1974). p. 286.

  77. L. Sondermann, W. Jiang, M. Shviro, A. Spieß, D. Woschko, L. Rademacher, and C. Janiak, Nickel-based metal-organic frameworks as electrocatalysts for the oxygen evolution reaction (OER). Molecules 27, 1241 (2022).

    Article  CAS  Google Scholar 

  78. X. Chen, J. Song, Y. Xing, and D. Sun, Nickel-decorated RuO2 nano crystals with rich oxygen vacancies for high-efficiency overall water splitting. J. Colloid Interface Sci. 630, 940 (2023).

    Article  CAS  Google Scholar 

  79. P.Y. Lee and L.Y. Lin, Developing zeolitic imidazolate frameworks 67-derived fluorides using 2-methylimidazole and ammonia fluoride for energy storage and electrocatalysis. Energy 239, 122129 (2022).

    Article  CAS  Google Scholar 

  80. I. Rabani and Y.S. Seo, The role of uniformly distributed ZnO nanoparticles on cellulose nanofibers in flexible solid state symmetric supercapacitors. J. Mater. Chem. A. 9, 11580 (2021).

    Article  CAS  Google Scholar 

  81. E. Jokar, A.I. Zad, and S. Shahrokhian, Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J. Solid State Electrochem. 19, 269 (2015).

    Article  CAS  Google Scholar 

  82. Y. Pi, Q. Shao, and X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Adv. Funct. Mater. 27, 1770164 (2022).

    Google Scholar 

  83. S. Kumari, B. Ajayi, P. Kumar, J. Jasinski, and M. Sunkara, A low-noble-metal W1xIrxO3δ water oxidation electrocatalyst for acidic media via rapid plasma synthesis. J. Energy Environ. Sci. 10, 2432 (2017).

    Article  CAS  Google Scholar 

  84. Y. Yang, H. Fei, and J. Tour, Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black. ACS Nano 8, 9518 (2021).

    Article  Google Scholar 

  85. K. Guo, Z. Zou, J. Du, Y. Zhao, B. Zhou, and C. Xu, Coupling FeSe2 with CoSe: an effective strategy to create stable and efficient electrocatalysts for water oxidation. Chem. Commun. 54, 11140 (2018).

    Article  CAS  Google Scholar 

  86. L. Li, K. Chao, X. Liu, and S. Zhou, Construction of La decorated CoMoP composite and its highly efficient electrocatalytic activity for overall water splitting in alkaline media. J. Alloy. Compd. 941, 168952 (2023).

    Article  CAS  Google Scholar 

  87. W. Li, M. Chen, Y. Lu, P. Qi, G. Liu, Y. Zhao, H. Wu, and Y. Tang, One-pot electrodeposition synthesis of NiFe-phosphate/phosphide hybrid nanosheet arrays for efficient water splitting. Appl. Surf. Sci. 598, 153717 (2022).

    Article  CAS  Google Scholar 

  88. X. Li, F. Duan, X. Lu, Y. Gang, W. Zheng, Y. Lin, L. Chen, Y. Dan, and X. Cheng, Surface engineering of flower-like Co-N-C on carbon paper for improved overall water splitting. J. Alloy. Compd. 935, 168128 (2023).

    Article  CAS  Google Scholar 

  89. G.A. Tafete, M.K. Abera, and G. Thothadri, Review on nanocellulose-based materials for supercapacitors applications. J. Energy Storage 48, 103938 (2022).

    Article  Google Scholar 

  90. J. Xiao, H. Li, H. Zhang, S. He, Q. Zhang, K. Liu, S. Jiang, G. Duan, and K. Zhang, Nanocellulose and its derived composite electrodes toward supercapacitors: fabrication, properties, and challenges. J. Bioresour. Bioprod. 7, 245 (2022).

    Article  CAS  Google Scholar 

  91. G. Jeanmairet, B. Rotenberg, and M. Salanne, Microscopic simulations of electrochemical double-layer capacitors. Chem. Rev. 122, 10860 (2022).

    Article  CAS  Google Scholar 

  92. J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821 (2022).

    Article  CAS  Google Scholar 

  93. L. Kops, P. Ruschhaupt, C. Guhrenz, P. Schlee, S. Pohlmann, A. Varzi, S. Passerini, and A. Balducci, Development of a high-energy electrical double-layer capacitor demonstrator with 5000 F in an industrial cell format. J. Power. Sources 571, 233016 (2023).

    Article  Google Scholar 

  94. M.S. Kiran, D. Pamu, R.L. Narayan, K.E. Prasad, S. Perumal, and S.R. Bakshi, Advances in functional and structural ceramics: development, characterization, and applications. Ceram. Int. 48, 28763 (2022).

    Article  Google Scholar 

  95. M.A. Yewale, R.A. Kadam, N.K. Kaushik, L.N. Nguyen, U.T. Nakate, L.P. Lingamdinne, J.R. Koduru, P.S. Auti, S.V. Vattikuti, and D.K. Shin, Electrochemical supercapacitor performance of NiCo2O4 nanoballs structured electrodes prepared via hydrothermal route with varying reaction time. A Physicochem. Eng. Asp. 653, 129901 (2022).

    Article  CAS  Google Scholar 

  96. M.A. Yewale, A.A. Jadhvar, R.B. Kharade, R.A. Kadam, V. Kumar, U.T. Nakate, P.B. Shelke, D.H. Bobade, A.M. Teli, S.D. Dhas, and D.K. Shin, Hydrothermally synthesized Ni3V2O8 nanoparticles with horny surfaces for HER and supercapacitor application. Mater. Lett. 338, 13403 (2023).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the Higher Education Commission Pakistan for partial support under the project NRPU/8350/8330. We also extend our sincere appreciation to the Researchers Supporting Project Number (RSP2024R79) at King Saud University, Riyadh, Saudi Arabia, and Ajman University, Grants ID: DRG ref. 2023-IRG-HBS-2 (RESHUSC-001), RTG-2023-HBS-1 (Phase 1). This publication is part of the R&D project PID2021-126235OB-C32 funded by MCIN/AEI/10.13039/501100011033/ and FEDER funds.

Author information

Authors and Affiliations

Authors

Contributions

ALB performed material synthesis and participated in the functional studies. TA performed XRD analysis and drafted the report. IAH validated the structural and OER results and edited the final draft. SK performed OER studies. ZAU calculated supercapacitor applications. AN partially supervised the work. NAS validated the supercapacitor data. ED edited and analyzed the OER results. AA performed the EDS analysis and pre-reviewed the manuscript draft. LS performed EIS analysis and wrote the draft. AK performed SEM and EDS measurements. MT calculated the ECSA and proofread the draft. AI-M carried out XPS measurements and analyzed the data. ZHI served as the main supervisor and wrote the first draft of the manuscript.

Corresponding authors

Correspondence to Elmuez Dawi or Zafar Hussain Ibupoto.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest or competing interests in this research work.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, A.L., Tahira, A., Halepoto, I.A. et al. Green-Mediated Synthesis of Co3O4 Nanostructures for Efficient Oxygen Evolution Reaction and Supercapacitor Applications. J. Electron. Mater. 53, 1012–1025 (2024). https://doi.org/10.1007/s11664-023-10846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10846-4

Keywords

Navigation