Skip to main content
Log in

Optimization of Deposition Conditions of SrZrS3 Perovskite Thin Films Grown by Chemical Bath Deposition

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Chalcogenide perovskites are receiving considerable attention as a new type of semiconducting material for optoelectronic applications. The current work is carried out on optimization studies for depositing SrZrS3 perovskite thin films via chemical bath deposition. The film properties were investigated as a function of molar concentration ratios (0.4–0.6 M), complexing agent, pH (9–10), deposition time (14–20 h), and annealing temperature (300–500°C). The orthorhombic structure of the deposited thin film was verified by x-ray diffraction (XRD) investigation. The Pnma space group was identified by XRD investigations with lattice constants of 7.09 Å, 9.77 Å, and 6.78 Å. The optical characteristics of the films were examined using a UV–Vis spectrophotometer. Bandgap values in the range of 3.34–3.50 eV, and absorption coefficient 1.75 × 104 cm−1 to 2.15 × 104 cm−1 were observed for the synthesized samples. It was found that 500°C for the annealing temperature and a pH of 10 were the optimal values for the SrZrS3 thin film deposition parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. N. Jaiswal, D. Kumari, R. Shukla, and S.K. Pandey, Design and performance optimization of eco-friendly Cs2AgBiBr6 double perovskite solar cell. J. Electr. Mater. 52, 7842 (2023).

    Article  ADS  CAS  Google Scholar 

  2. Y. Li, D. Liang, X. Zhang, Z. Xiong, B. Tang, F. Si, Z. Fang, H. Li, Z. Shi, and J. Chen, Crystal structure, sintering behavior, and microwave dielectric properties of low-permittivity Ba2Zr2Si3O12 ceramics. J. Electron. Mater. 52, 7164–7170 (2023).

    Article  ADS  CAS  Google Scholar 

  3. T. Fazal, S. Iqbal, M. Shah, A. Bahadur, B. Ismail, H.S.M. Abd-Rabboh, R. Hameed, Q. Mahmood, A. Ibrar, M.S. Nasar, Y. Ehsan, A.N. Shah Saqib, and M.A. Qayyum. Adnan, Deposition of bismuth sulfide and aluminum doped bismuth sulfide thin films for photovoltaic applications. J. Mater. Sci. Mater. Electron. 33, 42–53 (2022).

    Article  CAS  Google Scholar 

  4. T. Fazal, S. Iqbal, M. Shah, Q. Mahmood, B. Ismail, H.O. Alsaab, N.S. Awwad, H.A. Ibrahium, and E.B. Elkaeed, Optoelectronic, structural and morphological analysis of Cu3BiS3 sulfosalt thin films. Results Phys. 36, 105453 (2022).

    Article  Google Scholar 

  5. A. Rana, Lalita, S.P. Khanna, R. Srivastava, and C.K. Suman, Investigation of structural, optical, and photo-response properties of photochemical UV assisted CBD-grown CdS thin films. J. Electron. Mater. 52, 7302–7314 (2023).

    Article  ADS  CAS  Google Scholar 

  6. T. Fazal, S. Iqbal, M. Shah, B. Ismail, N. Shaheen, H. Alrbyawi, M.M. Al-Anazy, E.B. Elkaeed, H.H. Somaily, R.A. Pashameah, E. Alzahrani, and A.-E. Farouk, Improvement in optoelectronic properties of bismuth sulphide thin films by chromium incorporation at the orthorhombic crystal lattice for photovoltaic applications. Molecules 27, 6419 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R.I. Daniel, R. Govindaraj, P. Ramasamy, and A.K. Chauhan, Enhancement of hole extraction in carbon-based organic-inorganic hybrid perovskite solar cells using MAPbI3:NiO-NPs composite. J. Electron. Mater. 52, 7459–7474 (2023).

    Article  ADS  CAS  Google Scholar 

  8. T. Fazal, S. Iqbal, M. Shah, B. Ismail, N. Shaheen, A.I. Alharthi, N.S. Awwad, and H.A. Ibrahium, Correlation between structural, morphological and optical properties of Bi2S3 thin films deposited by various aqueous and non-aqueous chemical bath deposition methods. Results Phys. 40, 105817 (2022).

    Article  Google Scholar 

  9. F. Xie, D. Mei, L. Qiu, Z. Su, L. Chen, Y. Liu, and P. Du, High-efficiency fiber-shaped perovskite solar cells with TiO2/SnO2 double-electron transport layer materials. J. Electron. Mater. 52, 4626–4633 (2023).

    Article  ADS  CAS  Google Scholar 

  10. J. Younus, W. Shahzad, B. Ismail, T. Fazal, M. Shah, S. Iqbal, A.H. Jawhari, N.S. Awwad, and H.A. Ibrahium, Engineering the optical properties of nickel sulphide thin films by zinc integration for photovoltaic applications. RSC Adv. 13, 27415–27422 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Fida, S. Iqbal, M. Shah, T. Fazal, B. Ismail, H.U. Rehman, F.F. Al-Fawzan, E.B. Elkaeed, R.A. Pashameah, E. Alzahrani, and A.-E. Farouk, Mn2+ doped cobalt oxide and its composite with carbon nanotubes for adsorption-assisted photocatalytic applications. Sustainability 14, 16932 (2022).

    Article  CAS  Google Scholar 

  12. X. Shao, Y. Shi, H. Wang, X. Sun, L. Yang, X. Li, and M. Wang, A review on advances in the gas-sensitive properties of perovskite materials. J. Electron. Mater. 52, 5795–5809 (2023).

    Article  ADS  CAS  Google Scholar 

  13. M. Vijatović, J. Bobić, and B.D. Stojanović, History and challenges of barium titanate: Part II. Sci. Sinter. 40, 235–244 (2008).

    Article  Google Scholar 

  14. M. Boulos, S. Guillemet-Fritsch, F. Mathieu, B. Durand, T. Lebey, and V. Bley, Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics. Solid State Ionics 176, 1301–1309 (2005).

    Article  CAS  Google Scholar 

  15. A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D. Dunbar, A.R. Buckley, and D.G. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7(9), 2944–2950 (2014).

    Article  CAS  Google Scholar 

  16. S. Niu, J. Milam-Guerrero, Y. Zhou, K. Ye, B. Zhao, B.C. Melot, and J. Ravichandran, Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 33, 4135–4143 (2018).

    Article  ADS  CAS  Google Scholar 

  17. Z. Chen, J. Hu, Z. Lu, and X. He, Low-temperature preparation of lanthanum-doped BiFeO3 crystallites by a sol–gel-hydrothermal method. Ceram. Int. 37, 2359–2364 (2011).

    Article  CAS  Google Scholar 

  18. F. Guo, W. He, S. Qiu, C. Wang, X. Liu, K. Forberich, C.J. Brabec, and Y. Mai, Sequential deposition of high-quality photovoltaic perovskite layers via scalable printing methods. Adv. Func. Mater. 29, 1900964 (2019).

    Article  Google Scholar 

  19. S. Abel, F. Eltes, J.E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A.M. Gutierrez, and D. Tulli, Large Pockels effect in micro-and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. N. Labchir, E. Amaterz, A. Hannour, A. Ait Hssi, D. Vincent, A. Ihlal, and M. Sajieddine, Highly efficient nanostructured CoFe2O4 thin film electrodes for electrochemical degradation of rhodamine B. Water Environ. Res. 92, 759–765 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. F.R. Estrada, L.G. de Moraes, F.L. Vital, M.D. Neme, P. Schio, T.J. Mori, and J.C. Cezar, Island growth mode in pulsed laser deposited ferroelectric BaTiO3 thin films: the role of oxygen pressure during deposition. Ferroelectrics 545, 39–44 (2019).

    Article  ADS  CAS  Google Scholar 

  22. J.B. Whitaker, D.H. Kim, B.W. Larson, F. Zhang, J.J. Berry, M.F. Van Hest, and K. Zhu, Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels 2(11), 2442–2449 (2018).

    Article  CAS  Google Scholar 

  23. B. Liu, M. Long, M. Cai, L. Ding, and J. Yang, Interfacial charge behavior modulation in 2D/3D perovskite heterostructure for potential high-performance solar cells. Nano Energy 59, 715–720 (2019).

    Article  CAS  Google Scholar 

  24. Y. Wang, J. Yan, H. Cheng, N. Chen, P. Yan, F. Yang, and J. Ouyang, Lead zirconate titanate and barium titanate bi-layer ferroelectric films on Si. Ceram. Int. 45, 9032–9037 (2019).

    Article  CAS  Google Scholar 

  25. N. Bouaniza, N. Hosni, and H. Maghraoui-Meherzi, Structural and optical properties of Cu3SbS3 thin film deposited by chemical bath deposition along with the degradation of methylene blue. Surf. Coat. Technol. 333, 195–200 (2018).

    Article  CAS  Google Scholar 

  26. E. Yücel, N. Güler, and Y. Yücel, Optimization of deposition conditions of CdS thin films using response surface methodology. J. Alloy. Compd. 589, 207–212 (2014).

    Article  Google Scholar 

  27. J. Britt and C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993).

    Article  ADS  CAS  Google Scholar 

  28. J. Han, C. Spanheimer, G. Haindl, G. Fu, V. Krishnakumar, J. Schaffner, C. Fan, K. Zhao, A. Klein, and W. Jaegermann, Optimized chemical bath deposited CdS layers for the improvement of CdTe solar cells. Sol. Energy Mater. Sol. Cells 95, 816–820 (2011).

    Article  CAS  Google Scholar 

  29. M. Zahid, N. Nadeem, M.A. Hanif, I.A. Bhatti, H.N. Bhatti, and G. Mustafa, Metal Ferrites and Their Graphene-Based Nanocomposites: Synthesis, Characterization, and Applications in Wastewater Treatment, Magnetic Nanostructures (Berlin: Springer, 2019), pp.181–212.

    Google Scholar 

  30. S. Khan, N. Humera, S. Niaz, S. Riaz, S. Atiq, and S. Naseem, Simultaneous normal—anomalous dielectric dispersion and room temperature ferroelectricity in CBD perovskite BaTiO3 thin films. J. Market. Res. 9, 11439–11452 (2020).

    CAS  Google Scholar 

  31. L. Bakueva, I. Gorelikov, S. Musikhin, X.S. Zhao, E.H. Sargent, and E. Kumacheva, PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv. Mater. 16, 926–929 (2004).

    Article  CAS  Google Scholar 

  32. A. Ubale, Effect of complexing agent on growth process and properties of nanostructured Bi2S3 thin films deposited by chemical bath deposition method. Mater. Chem. Phys. 121, 555–560 (2010).

    Article  CAS  Google Scholar 

  33. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3 NH3) PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

    Article  CAS  Google Scholar 

  35. J. Sun and D.J. Singh, Electronic properties, screening, and efficient carrier transport in NaSbS2. Phys. Rev. Appl. 7, 024015 (2017).

    Article  ADS  Google Scholar 

  36. S. De Wolf, J. Holovsky, S.J. Moon, P. Loper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, and C. Ballif, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014).

    Article  PubMed  Google Scholar 

  37. E. Yücel and Y. Yücel, Optimization of zinc sulfide thin film coating process using response surface methodology. J. Mater. Sci.: Mater. Electron. 26, 196–203 (2015).

    Google Scholar 

  38. S. Chu, and A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. P.-J. Alet, S. Palacin, P.R.I. Cabarrocas, B. Kalache, M. Firon, and R. De Bettignies, Hybrid solar cells based on thin-film silicon and P3HT: A first step towards nano-structured devices. Eur. Phys. J. Appl. Phys. 36, 231–234 (2006).

    Article  ADS  CAS  Google Scholar 

  40. A. Khaleghi, S.M. Sadrameli, and M. Manteghian, Thermodynamic and kinetics investigation of homogeneous and heterogeneous nucleation. Rev. Inorg. Chem. 40, 167–192 (2020).

    Article  CAS  Google Scholar 

  41. M.J. Bradshaw, Global energy dilemmas: a geographical perspective. Geogr. J. 176, 275–290 (2010).

    Article  Google Scholar 

  42. H.H. Ahmed, Variation of the structural, optical and electrical properties of CBD CdO with processing temperature. Mater. Sci. Semicond. Process. 66, 215–222 (2017).

    Article  ADS  CAS  Google Scholar 

  43. M.M. Gomaa, G.R. Yazdi, S. Schmidt, M. Boshta, V. Khranovskyy, F. Eriksson, B.S. Farag, M.B.S. Osman, and R. Yakimova, Effect of precursor solutions on the structural and optical properties of sprayed NiO thin films. Mater. Sci. Semicond. Process. 64, 32–38 (2017).

    Article  CAS  Google Scholar 

  44. S.H. Chaki, M.P. Deshpande, J.P. Tailor, M.D. Chaudhary, and K.S. Mahato, Study of surface microstructure and optical properties of as-grown Mo0.6W0.4Se2 single crystals. AIP Conf. Proc. 1512, 882–883 (2013).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for supporting this work through research groups program under grant number RGP.2/164/43. This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R156), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Shahid Iqbal or Bushra Ismail.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, A., Iqbal, S., Fazal, T. et al. Optimization of Deposition Conditions of SrZrS3 Perovskite Thin Films Grown by Chemical Bath Deposition. J. Electron. Mater. 53, 1551–1560 (2024). https://doi.org/10.1007/s11664-023-10825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10825-9

Keywords

Navigation