Skip to main content
Log in

SrHfO3:Cr3+ Perovskite Microcubes for Rare-Earth-Free NIR-I Light Emission

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Near-infrared (NIR)-emitting phosphors are in high demand owing to their application in areas of high importance, such as security, night-surveillance, imaging, storage, and optoelectronics. However, to achieve high success in these applications, wide broadband NIR emissions are needed and, in that context, the crystalline field of the host matrix plays a very important role. In this work, we have achieved a broad NIR emission in the range of 700–1000 nm in hydrothermally synthesized SrHfO3:Cr3+ (SHOC). SHO assumes a microcrystalline cube morphology, and chromium doping make it more and more symmetric, and the particle size increases with doping. Broadband NIR emissions have been ascribed to the stabilization of Cr3+ in a strong crystalline field of HfO6 octahedra. X-ray photoelectron spectroscopy supported this by confirming the formation of oxygen vacancies in all the samples. The shorter lifetime (~13–44 µs) is attributed to chromium ions situated in close vicinity to oxygen vacancies at distance X, whereas the longer-lived (~56–127 µs) originate from chromium ions situated at a long distance from oxygen vacancies at distance Y, and Y is greater than X. Positron annihilation lifetime spectroscopy suggested an increase in defect concentration with doping, which causes concentration quenching beyond 2.0 mol% endowed by multipolar interactions. This work culminates the very important role of defects, local site, and doping on efficient NIR light emissions from a perovskite lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article

References

  1. M.-P. Zhuo, X.-D. Wang, and L.-S. Liao, Recent progress of novel organic near-infrared-emitting materials. Small Sci. 2, 2200029 (2022).

    Article  CAS  Google Scholar 

  2. B.B. Srivastava, S.K. Gupta, S. Mohan, and Y. Mao, Molten-salt-assisted annealing for making colloidal ZnGa2O4: Cr nanocrystals with high persistent luminescence. Chem. A Eur. J. 27, 11398–11405 (2021).

    Article  CAS  Google Scholar 

  3. S.K. Gupta, K. Sudarshan, D. Chandrashekhar, A. Balhara, and M. Mohapatra, Solid solution of Cr3+ doped ZnGa2O4 and Zn2SnO4 to create cation inversion and its role on persistent deep red emission. J. Lumin. 257, 119697 (2023).

    Article  CAS  Google Scholar 

  4. S.K. Gupta, K. Sudarshan, P. Modak, D. Chandrashekhar, M. Tyagi, B. Modak, and M. Mohapatra, Design of need-based phosphors and scintillators by compositional modulation in the ZnGa2xAlxO4:Cr3+ spinel: pure compound versus solid solutions. Phys. Chem. Chem. Phys. 24, 23790–23801 (2022).

    Article  CAS  Google Scholar 

  5. S.K. Gupta, K. Sudarshan, N.S. Rawat, M. Tyagi, and M. Mohapatra, Delineating the role of defect and compositions in luminescent ZnO-ZnGa2xAlxO4:Cr3+ micro composites towards efficient photon utilization. J. Lumin. 257, 119730 (2023).

    Article  CAS  Google Scholar 

  6. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S.K. Sharma, B. Viana, A.J.J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article  CAS  Google Scholar 

  7. S.-K. Sun, H.-F. Wang, and X.-P. Yan, Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc. Chem. Res. 51, 1131–1143 (2018).

    Article  CAS  Google Scholar 

  8. C.T. Jackson, S. Jeong, G.F. Dorlhiac, and M.P. Landry, Advances in engineering near-infrared luminescent materials. Iscience 24, 102156 (2021).

    Article  CAS  Google Scholar 

  9. P. Dang, Y. Wei, D. Liu, G. Li, and J. Lin, Recent advances in chromium-doped near-infrared luminescent materials: fundamentals. Optim. Strateg. Appl. Adv. Opt. Mater. 11, 2201739 (2023).

    Article  CAS  Google Scholar 

  10. S.K. Gupta, K. Sudarshan, B. Modak, and R. Gupta, Interstitial zinc boosted light tunability, afterglow, and ultrabright white emission in zinc germanate (Zn2GeO4). ACS Appl. Electron. Mater. 5, 1286–1294 (2023).

    Article  CAS  Google Scholar 

  11. L.K. Bharat, S.-K. Jeon, K.G. Krishna, and J.S. Yu, Rare-earth free self-luminescent Ca2KZn2(VO4)3 phosphors for intense white light-emitting diodes. Sci. Rep. 7, 42348 (2017).

    Article  CAS  Google Scholar 

  12. I.V. Berezovskaya, V.P. Dotsenko, A.S. Voloshinovskii, and S.S. Smola, Near infrared emission of Eu2+ ions in Ca3Sc2Si3O12. Chem. Phys. Lett. 585, 11–14 (2013).

    Article  CAS  Google Scholar 

  13. Z. Yang, Y. Zhao, Y. Zhou, J. Qiao, Y.-C. Chuang, M.S. Molokeev, and Z. Xia, Giant red-shifted emission in (Sr, Ba)Y2O4:Eu2+ phosphor toward broadband near-infrared luminescence. Adv. Func. Mater. 32, 2103927 (2022).

    Article  CAS  Google Scholar 

  14. Y. Zhu, X. Wang, J. Qiao, M.S. Molokeev, H.C. Swart, L. Ning, and Z. Xia, regulating Eu2+ multisite occupation through structural disorder toward broadband near-infrared emission. Chem. Mater. 35, 1432–1439 (2023).

    Article  CAS  Google Scholar 

  15. O.S. Wenger, and H.U. Güdel, Optical spectroscopy of CrCl63− doped Cs2NaScCl6: broadband near-infrared luminescence and Jahn–Teller effect. J. Chem. Phys. 114, 5832–5841 (2001).

    Article  CAS  Google Scholar 

  16. Q. Zhang, D. Liu, P. Dang, H. Lian, G. Li, and J. Lin, Two Selective sites control of Cr3+-doped ABO4 phosphors for tuning ultra-broadband near-infrared photoluminescence and multi-applications. Laser Photonics Rev. 16, 2100459 (2022).

    Article  CAS  Google Scholar 

  17. F. Zhao, Z. Song, J. Zhao, and Q. Liu, Double perovskite Cs2AgInCl6:Cr3+: broadband and near-infrared luminescent materials. Inorg. Chem. Front. 6, 3621–3628 (2019).

    Article  CAS  Google Scholar 

  18. B.B. Srivastava, S.K. Gupta, and Y. Mao, Remarkable enhancement of photoluminescence and persistent luminescence of NIR emitting ZnGa2O4:Cr3+ nanoparticles. CrystEngComm 22, 2491–2501 (2020).

    Article  CAS  Google Scholar 

  19. H. Hua, J. Ueda, J. Xu, M. Back, and S. Tanabe, High-pressure photoluminescence properties of Cr3+-doped LaGaO3 perovskites modulated by pressure-induced phase transition. Inorg. Chem. 60, 19253–19262 (2021).

    Article  CAS  Google Scholar 

  20. S.K. Gupta, P.S. Ghosh, N. Pathak, A. Arya, and V. Natarajan, Understanding the local environment of Sm3+ in doped SrZrO3 and energy transfer mechanism using time-resolved luminescence: a combined theoretical and experimental approach. RSC Adv. 4, 29202–29215 (2014).

    Article  CAS  Google Scholar 

  21. S.K. Gupta, P.S. Ghosh, A.K. Yadav, N. Pathak, A. Arya, S.N. Jha, D. Bhattacharyya, and R.M. Kadam, Luminescence properties of SrZrO3/Tb3+ perovskite: host-dopant energy-transfer dynamics and local structure of Tb3+. Inorg. Chem. 55, 1728–1740 (2016).

    Article  Google Scholar 

  22. S.K. Gupta, and Y. Mao, A review on molten salt synthesis of metal oxide nanomaterials: status, opportunity, and challenge. Prog. Mater. Sci. 117, 100734 (2021).

    Article  CAS  Google Scholar 

  23. S.K. Gupta, K. Sudarshan, and R.M. Kadam, Optical nanomaterials with focus on rare earth doped oxide: a review. Mater. Today Commun. 27, 102277 (2021).

    Article  CAS  Google Scholar 

  24. L. Huang, L. Lin, W. Xie, Z. Qiu, H. Ni, H. Liang, Q. Tang, L. Cao, J.-X. Meng, and F. Li, Near-Infrared persistent luminescence in a Cr3+-doped perovskite for low-irradiance imaging. Chem. Mater. 32, 5579–5588 (2020).

    Article  CAS  Google Scholar 

  25. Y. Katayama, H. Kobayashi, and S. Tanabe, Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging. Appl. Phys. Express 8, 012102 (2015).

    Article  CAS  Google Scholar 

  26. Z. Sun, T. Zhou, R. Liu, X. Tang, and R.-J. Xie, Ultrawide near-infrared SrHfO3:Cr3+ phosphor with dual emission bands. J. Am. Ceram. Soc. 106, 3446–3454 (2023).

    Article  CAS  Google Scholar 

  27. H. Fukushima, D. Nakauchi, G. Okada, T. Kato, N. Kawaguchi, and T. Yanagida, Ce concentration dependence on scintillation properties of SrHfO3 single crystals. J. Alloy. Compd. 934, 167929 (2023).

    Article  CAS  Google Scholar 

  28. R. Zhang, Y. Jin, L. Yuan, K. Deng, C. Wang, G. Xiong, L. Chen, and Y. Hu, Inorganic photochromism material SrHfO3:Er3+ integrating multiple optical behaviors for multimodal anti-counterfeiting. J. Alloy. Compd. 921, 166081 (2022).

    Article  CAS  Google Scholar 

  29. S.K. Gupta, M. Tyagi, and K. Sudarshan, Stabilization of UO22+ in SrHfO3 perovskite and probing defects, local structure and photo/thermoluminescence. J. Lumin. 243, 118663 (2022).

    Article  CAS  Google Scholar 

  30. J. Kim, D. Song, H. Yun, J. Lee, J.H. Kim, J.H. Kim, B. Kim, and K. Char, Low leakage in high-k perovskite gate oxide SrHfO3. Adv. Electron. Mater. 9, 2201341 (2023).

    Article  CAS  Google Scholar 

  31. M. Roy, S. Ghosh, and M.K. Naskar, Solvothermal synthesis of Cr2O3 nanocubes via template-free route. Mater. Chem. Phys. 159, 101–106 (2015).

    Article  CAS  Google Scholar 

  32. T.X. Nguyen, J. Patra, J.-K. Chang, and J.-M. Ting, High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. J. Mater. Chem. A 8, 18963–18973 (2020).

    Article  CAS  Google Scholar 

  33. D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong, K. Dong, Z. Wang, S. Luo, Y. Liu, and X. Qi, Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloy. Compd. 844, 156158 (2020).

    Article  CAS  Google Scholar 

  34. G. Bai, H. Dai, Y. Liu, K. Ji, X. Li, and S. Xie, Preparation and catalytic performance of cylinder-and cake-like Cr2O3 for toluene combustion. Catal. Commun. 36, 43–47 (2013).

    Article  CAS  Google Scholar 

  35. T. Tan, Y. Du, Y. Sun, H. Zhang, A. Cao, and G. Zha, Resistive switching modification by ultraviolet illumination in amorphous SrO-based resistive random access memory. J. Mater. Sci. Mater. Electron. 30, 13445–13453 (2019).

    Article  CAS  Google Scholar 

  36. N. Ohtsu, B. Tsuchiya, M. Oku, T. Shikama, and K. Wagatsuma, X-ray photoelectron spectroscopic study on initial oxidation of hafnium hydride fractured in an ultra-high vacuum. Appl. Surf. Sci. 253, 6844–6847 (2007).

    Article  CAS  Google Scholar 

  37. T.-C. Tien, L.-C. Lin, L.-S. Lee, C.-J. Hwang, S. Maikap, and Y.M. Shulga, Analysis of weakly bonded oxygen in HfO2/SiO2/Si stacks by using HRBS and ARXPS. J. Mater. Sci. Mater. Electron. 21, 475–480 (2010).

    Article  CAS  Google Scholar 

  38. T.P. Smirnova, L.V. Yakovkina, V.N. Kitchai, V.V. Kaichev, Y.V. Shubin, N.B. Morozova, and K.V. Zherikova, Chemical vapor deposition and characterization of hafnium oxide films. J. Phys. Chem. Solids 69, 685–687 (2008).

    Article  CAS  Google Scholar 

  39. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, and Y. Tong, Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 3, 1021 (2013).

    Article  Google Scholar 

  40. Y. Zhuang, J. Ueda, S. Tanabe, and P. Dorenbos, Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors. J. Mater. Chem. C 2, 5502–5509 (2014).

    Article  CAS  Google Scholar 

  41. S.K. Gupta, R.M. Kadam, and P.K. Pujari, Lanthanide spectroscopy in probing structure-property correlation in multi-site photoluminescent phosphors. Coord. Chem. Rev. 420, 213405 (2020).

    Article  CAS  Google Scholar 

  42. G. Blasse, Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem. 62, 207–211 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Raghunath Acharya (Head, NA&AS) and Dr. P.K. Mohapatra (Head, RCD and Associate Director, Radiochemistry and Isotope Group), BARC for their support and encouragement.

Funding

Funding was provided by the Bhabha Atomic Research Centre, Mumbai for the present study.

Author information

Authors and Affiliations

Authors

Contributions

Santosh K. Gupta conceived the problem and supervised the work, interpreted the results and wrote the main manuscript. Annu Balhara carried out the PL experiments and Shubham Shaw synthesized the materials and carried out XPS measurements. N.K. Prasad provided the lab facilities and resources for materials synthesis and XPS and supervised the work. Kathi Sudarshan contributed in PALS data collection and analysis as well as in fine tuning of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Santosh K. Gupta.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This declaration is “not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Balhara, A., Shaw, S.K. et al. SrHfO3:Cr3+ Perovskite Microcubes for Rare-Earth-Free NIR-I Light Emission. J. Electron. Mater. 53, 280–287 (2024). https://doi.org/10.1007/s11664-023-10775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10775-2

Keywords

Navigation