Skip to main content
Log in

Incorporation of Transition Metal Ions into Li2O + LiF + ZnF2 + B2O3 + P2O5-MnO Glasses: Effects on Elastic, Mechanical, and Radiation Effectiveness Behaviors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript


The desired target of the current report was to examine the efficiency of MnO-based glass systems against x- or g-rays, and mechanical properties with varying amounts of MnO incorporation. The focus was on evaluating their radiation shielding performance and determining their elasto-mechanic intrinsic characteristics. Various gamma and neutron shielding factors, including HVL (half-value layer), Zeff (Zeff: effective atomic number), Zeq (equivalent atomic number), EBF (exposure buildup factor), EABF (energy absorption buildup factor), ACS (atomic cross-section), ESC (electronic cross-section), and SAFE* (specific absorbed fraction of energy) were planned to assess the radio-protection capabilities of the probed glass systems. Exemplified at E = 15 keV, the MAC (mass attenuation coefficient) values are: 13.99 cm2/g, 14.03 cm2/g, 14.18 cm2/g, 14.36  cm2/g, and 14.55 cm2/g for the glass blocks encoded as LZBP, 0.1Mn:LZBP, 0.5Mn:LZBP, 1.0Mn:LZBP, and 1.5Mn:LZBP respectively, while the SAFE values vary between 31907 g−1 and 32013 g−1 as Mn2+ is increased from 0.0 mol% to 1.5 mol%. The outcomes indicate that as the manganese (II) oxide mol% increases, then the MAC, Zeff, Zeq, ACS, and ESC values also increase. Among the samples, 1.5Mn:LZBP exhibited the least HVL, EBF, EABF, and SAFE values. This glass, which contains 1.5 mol% of MnO and has the highest interconnecting bonding/volume, may be deemed as an advanced glass for ray protection in the different fields, providing valuable insights into their radiation shielding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Relevant research data are included in the text of the work.

Availability of Data and Materials

All data generated or analyzed during the study are included in this article.


  1. A.C. Wright, Chemical bonding in phosphate glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 55, 193 (2014).

    CAS  Google Scholar 

  2. A.M. Abdelghany, F.H. ElBatal, M.A. Azooz, M.A. Ouis, and H.A. ElBatal, Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation. Spectrochim. Acta A. 98, 148 (2012).

    Article  CAS  Google Scholar 

  3. L. Koudelka, I. Rösslerová, Z. Ernošek, P. Mošner, L. Montagne, B. Revel, and G. Tricot, Structure and properties of lead borophosphate glasses doped with molybdenum oxide. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 53, 245 (2012).

    CAS  Google Scholar 

  4. M. Karabulut, A. Popa, G. Borodi, and R. Stefan, An FTIR and ESR study of iron doped calcium borophosphate glass ceramics. J. Mol. Struct. 1101, 170–175 (2015)

    Article  CAS  Google Scholar 

  5. M. Kawano, H. Takebe, and M. Kuwabara, Compositional dependence of the luminescence properties of Mn-doped metaphosphate glasses. Opt. Mater. 32, 277 (2009).

    Article  CAS  Google Scholar 

  6. N.K. Mohan, M.R. Reddy, C.K. Jayasankar, and N. Veeraiah, Spectroscopic and dielectric studies on MnO doped PbO–Nb2O5–P2O5 glass system. J. Alloys Compd. 458, 66 (2008).

    Article  CAS  Google Scholar 

  7. D. Ehrt, Zinc and manganese borate glasses–phase separation, crystallisation, photoluminescence and structure. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 54, 65 (2013).

    CAS  Google Scholar 

  8. C.P. Reddy, V. Naresh, and N.R. Reddy, Li2O-LiF-ZnF2-B2O3-P2O5: MnO glasses—thermal, structural, optical and luminescence characteristics. Opt. Mater. 51, 154 (2016).

    Article  Google Scholar 

  9. L. Koudelka, J. Jirak, P. Mosner, L. Montagne, and G. Palavit, Study of lithium-zinc borophosphate glasses. J. Mater. Sci. 41, 4636 (2006).

    Article  CAS  Google Scholar 

  10. Y.B. Saddeek, K. Aly, G. Abbady, N. Afify, K.S. Shaaban, and A. Dahshan, Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y2O3). J. Non-Cryst. Solids 454, 13 (2016).

    Article  CAS  Google Scholar 

  11. R.M.M. Morsi, M.A.F. Basha, and M.M. Morsi, Synthesis and physical characterization of amorphous silicates in the system SiO2-Na2O-RO (R=Zn, Pb or Cd). J. Non-Cryst. Solids 439, 57 (2016).

    Article  CAS  Google Scholar 

  12. Y.B. Saddeek, Structural and acoustical studies of lead sodium borate glasses. J. Alloy. Compd. 467, 21 (2009).

    Article  Google Scholar 

  13. L.J. Manfredo, and L.D. Pye, Dielectric-relaxation currents in cadmium borosilicate glasses. J. Appl. Phys. 49, 682 (1978).

    Article  CAS  Google Scholar 

  14. P. Kaur, D. Singh, and T. Singh, Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Des. 307, 364 (2016).

    Article  CAS  Google Scholar 

  15. H. Doweidar, G. El-Damrawi, and S. El-Stohy, Structure and properties of CdO–B2O3 and CdO–MnO–B2O3 glasses; Criteria of getting the fraction of four coordinated boron atoms from infrared spectra. Phys. B Condens. Matter 525, 137 (2017).

    Article  CAS  Google Scholar 

  16. M. Behera, N.C. Mishra, S.A. Khan, and R. Naik, Influence of 120 MeV Ag swift heavy ion irradiation on the optical and electronic properties of As-Se-Bi chalcogenide thin films. J. Non-Cryst. Solids 544, 120191 (2020).

    Article  CAS  Google Scholar 

  17. D. Sahoo, S. Sahoo, D. Alagarasan, R. Ganesan, S. Varadharajaperumal, and R. Naik, Proton ion irradiation on As40Se50Sb10 thin films: fluence-dependent tuning of linear-nonlinear optical properties for photonic applications. ACS Appl. Electron. Mater. 4(2), 856 (2022).

    Article  CAS  Google Scholar 

  18. R. Panda, S.A. Khan, U.P. Singh, R. Naik, and N.C. Mishr, The impact of fluence dependent 120 MeV Ag swift heavy ion irradiation on the changes in structural, electronic, and optical properties of AgInSe2 nano-crystalline thin films for optoelectronic applications. RSC Adv. 11, 26218 (2021).

    Article  CAS  Google Scholar 

  19. A. Aparimita, R. Naik, S. Sahoo, C. Sripan, and R. Ganesan, Influence of low energy Ag ion irradiation for formation of Bi2Se3 phase from Bi/GeSe2 heterostructure thin films. Appl. Phys. A 126, 1–10 (2020).

    Article  Google Scholar 

  20. Z.Y. Khattari, Radiation shielding parameters of CuxP2O5+ x copper phosphate compounds: a comparative study using Phys-X/PSD and Py-MLBUF software. J. Aust. Ceram. Soc. 57, 1–14 (2022).

    Google Scholar 

  21. S. Al-Omari, N.A. Alsaif, Z.Y. Khattari, H. Al-Ghamdi, A.M. Abdelghany, and Y.S. Rammah, Physical, mechanical, neutron-radiation shielding, and optical properties of ternary glasses at equimolar ratio of Na2O: P2O5 with distinct CuO contents. Appl. Phys. A 129, 256 (2023).

    Article  CAS  Google Scholar 

  22. A. Makishima, T. Utsugi, and T. Sakaino, J. Am. Ceram. Soc. 62, 30 (1979).

    Google Scholar 

  23. G.K. Priya, S. Yusub, A.R. Babu, N.S. Ram, and V. Aruna, Electrical and spectroscopic characteristics of B2O3–Bi2O3–Al2O3–MgO glasses alloyed with MnO. J. Phys. Chem. Solids 170, 110957 (2022).

    Article  CAS  Google Scholar 

  24. S. Ahammed, B. Srinivas, and M. Shareefuddin, A comparative study on the physical and spectral (optical, EPR and FTIR) properties of NaF-CdO-B2O3 and KF-CdO-B2O3 glass systems doped with manganese ions. J. Non-Cryst. Solids 594, 121789 (2022).

    Article  CAS  Google Scholar 

  25. A. Abul-Magd, A.A.H. Basry, S.M. Abu El Hassan, and A.S. Abu-Khadra, Interplay between structural modifications and optical/luminescence response in Mn-doped alkali borate glasses. Mater. Chem. Phys. 288, 126381 (2022).

    Article  CAS  Google Scholar 

  26. M.K. Halimah, A. Azuraida, M. Ishak, and L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J. Non-Cryst. Solids 512, 140 (2019).

    Article  CAS  Google Scholar 

  27. P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, and W. Chewpraditkul, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses. J. Phys. Chem. Solids 72, 245 (2011).

    Article  CAS  Google Scholar 

  28. A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses. Radiat. Phys. Chem. 136, 50 (2017).

    Article  CAS  Google Scholar 

  29. Z.Y. Khattari, A.M. Norah, M.S. Alsaif, R.A. Shams, and Y.S.R. Elsad, Development of materials from natural clay minerals and magnesia useful for radiation shielding applications. SILICON 15, 4897 (2023).

    Article  CAS  Google Scholar 

  30. M. Çelikbilek Ersundu, A.E. Ersundu, M.I. Sayyed, G. Lakshminarayana, and S. Aydin, Evaluation of physical, structural properties and shielding parameters for K2O–WO3–TeO2 glasses for gamma ray shielding applications. J. Alloy. Compd. 714, 278 (2017).

    Article  Google Scholar 

  31. H.O. Ozge Kilicoglu, and Tekin., Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceram. Int. 46, 1323 (2019).

    Article  Google Scholar 

  32. V.P. Singh, and N.M. Badiger, Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry. Radiat. Phys. Chem. 104, 61 (2014).

    Article  CAS  Google Scholar 

  33. M.S. Al-Buriahi, A.S. Abouhaswa, H.O. Tekin, C. Sriwunkum, F.I. El-Agawany, T. Nutaro, and Y.S.R. Esra Kavaz, Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3–BaCO3–Li2O3 glass systems. Ceram. Int. 46, 1711 (2019).

    Article  Google Scholar 

  34. Y. Karabul, L.A. Susam, O. İçelli, and Ö. Eyecioğlu, Computation of EABF and EBF for basalt rock samples. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 797, 29 (2015).

    Article  CAS  Google Scholar 

  35. Y.B. Saddeek, S.A.M. Issa, T. Alharbi, K. Aly, M. Ahmad, and H.O. Tekin, Mechanical and nuclear shielding properties of sodium cadmium borate glasses: impact of cadmium oxide additive. Ceram. Int. 46, 2661 (2020).

    Article  CAS  Google Scholar 

  36. H.C. Manjunatha, L. Seenappa, B.M. Chandrika, K.N. Sridhar, and C. Hanumantharayappa, Gamma, x-ray and neutron shielding parameters for the Al-based glass alloys. Appl. Radiat. Isot. 139, 187 (2018).

    Article  CAS  Google Scholar 

  37. S.M. Shaaban, N.A. Alsaif, H. Al-Ghamdi, Z.Y. Khattari, Y.S. Rammah, A.M. El-Refaey, and R.A. Elsad, Influence of copper ions on the structural, mechanical, radiation shielding and dielectric properties of borate zinc-fluoride glasses. J. Electron. Mater. 52, 6269 (2023).

    Article  CAS  Google Scholar 

  38. G. Almisned, G. Bilal, Y. Rammah, S.A. Issa, G. Kilic, H.M. Zakaly, and H.O. Tekin, Mechanical properties, elastic moduli, and gamma radiation shielding properties of some zinc sodium tetraborate glasses: a closer look at ZnO/CaO substitution. J. Electron. Mater. 50, 6844 (2021).

    Article  CAS  Google Scholar 

  39. C.S. Ramanujan, Z.A. Alrowaili, K.C. Sekhar, J.S. Alzahrani, M. Shareefuddin, L. Haritha, and M.S. Al-Buriahi, Synthesis and optimization of Bi2O3-B2O3-Cr2O3 glass system for structural, optical, and radiation shielding properties. J. Electron. Mater. 52, 6445 (2023).

    Article  CAS  Google Scholar 

Download references


The authors would like to thanks the Hashemite University for the financial support.



Author information

Authors and Affiliations



ZK: Conceptualization, methodology and finalized the paper. FA: Investigation, data analysis and figures. SAO: Drafting the first version of the article. YSR: Visualization, and Supervision.

Corresponding author

Correspondence to Ziad Y. Khattari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 262 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Omari, S., Afaneh, F., Rammah, Y.S. et al. Incorporation of Transition Metal Ions into Li2O + LiF + ZnF2 + B2O3 + P2O5-MnO Glasses: Effects on Elastic, Mechanical, and Radiation Effectiveness Behaviors. J. Electron. Mater. 53, 462–472 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: