Skip to main content
Log in

Low-Temperature-Sintered Nano-Ag Film for Power Electronics Packaging

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nano-Ag paste sintering has attracted much attention for high-power electronics packaging owing to its excellent electrical conductivity, thermal conductivity, and oxidation resistance. However, it requires printing and pre-heating before the die attach process, and the organics in the paste do not evaporate easily for large-area die attachment. In this work, a nano-Ag film (~ 100 μm thickness) with only 2.1% organics is developed to realize low-temperature bonding, which is compatible with the current sintering bonding process. The optimized preparation parameters of the nano-Ag films was optimized as 180°C-5 min. The characteristics and sintering mechanism of nano-Ag film are discussed. The results showed that the micro/nanostructure on the surface of nano-Ag film with a small amount of organic material is responsible for the low-temperature sintering ability, which realized 24.01 MPa shear strength at 200°C. The fracture was analyzed and failure modes are discussed. The easy-to-use features and low-temperature sintering ability make the nano-Ag film a promising die-attach material with high reliability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.R. Esa, G. Omar, S.H. Sheikh, M. Fadzullah, and B. Out, Diffusion mechanism of silver particles in polymer binder for die attach interconnect technology. Int. J. Nanoelectron. M. 13, 461–472 (2020).

    Google Scholar 

  2. H. Zhang, H. Zhang, Q. Jia, C. Yin, Z. Deng, W. Guo, and Z. Wan, Novel SiC-based power device bonding materials of nano foam sheet and its characteristic and properties. IEEE T Electron. Pack. (2023). https://doi.org/10.1109/tcpmt.2023.3288389.

    Article  Google Scholar 

  3. Lei, G. Thermomechanical reliability of low-temperature sintered attachments on direct bonded aluminum (DBA) substrate for high-temperature electronics packaging. Virginia Tech, (2010).

  4. G. Qu, Z. Deng, W. Guo, Z. Peng, Q. Jia, E. Deng, and H. Zhang, The heat-dissipation sintered interface of power chip and heat sink and its high-temperature thermal analysis. IEEE T. Electron. Pack. (2023). https://doi.org/10.1109/tcpmt.2023.3290303.

    Article  Google Scholar 

  5. C.M. Chen, K.J. Wang, and K.C. Chen, Isothermal solid-state aging of Pb-5Sn solder bump on Ni/Cu/Ti under bump metallization. J. Alloy. Compd. 432, 122–128 (2007). https://doi.org/10.1016/j.jallcom.2006.05.116.

    Article  CAS  Google Scholar 

  6. Z. Zheng, C. Chen, Y. Yang, Z. Hao, and K. Suganuma, Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloy. Compd. 18, 34383 (2018). https://doi.org/10.1016/j.jallcom.2018.11.251.

    Article  CAS  Google Scholar 

  7. R.W. Johnson, J.L. Evans, P. Jacobsen, J. Thompson, and M. Christopher, The changing automotive environment: high-temperature electronics. IEEE T. Electron. Pack. 27, 164–176 (2005). https://doi.org/10.1109/tepm.2004.843109.

    Article  Google Scholar 

  8. C. Pei, C. Chen, K. Suganuma, and G. Fu, Thermal stability of silver paste sintering on coated copper and aluminum substrates. J. Electron. Mater. 47, 811–819 (2018). https://doi.org/10.1007/s11664-017-5857-2.

    Article  CAS  Google Scholar 

  9. F. Yang, W. Zhu, Wu. Weizhen, H. Ji, C. Hang, and M. Li, Microstructural evolution and degradation mechanism of SiC-Cu chip attachment using sintered Nano-Ag paste during high-temperature ageing. J. Alloy. Compd. 846, 156442 (2020). https://doi.org/10.1016/j.jallcom.2020.156442.

    Article  CAS  Google Scholar 

  10. J. Fan, G. Li, K. Rajavel, P. Zhu, and C.P. Wong, Synergistic size and shape effect of dendritic silver nanostructures for low-temperature sintering of paste as die attach materials. J. Mater. Sci. Mater. EL 32(1), 323–336 (2021). https://doi.org/10.1007/s10854-020-04783-9.

    Article  CAS  Google Scholar 

  11. D.M. Rhee, H.Y. Hwang, J. Aw, S.L. Ho, and P.S. Ravinder, High power SiC inverter module packaging solutions for junction temperature over 220°C. IEEE T. Electron. Pack. (2014). https://doi.org/10.1109/eptc.2014.7028383.

    Article  Google Scholar 

  12. C. Chen, C. Choe, D. Kim, Z. Zhang, X. Long, Z. Zhou, F. Wu, and K. Suganuma, Effect of oxygen on microstructural coarsening behaviors and mechanical properties of Ag sinter paste during high-temperature storage from macro to micro. J. Alloy. Compd. 834, 155173 (2020). https://doi.org/10.1016/j.jallcom.2020.155173.

    Article  CAS  Google Scholar 

  13. R. Khazaka, M.L. Locatelli, S. Diaham, and P. Bidan, Effects of mechanical stresses, thickness and atmosphere on aging of polyimide thin films at high temperature. Polym. Degrad. Stabil. 98, 361–367 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.09.005.

    Article  CAS  Google Scholar 

  14. Q. Wang, S. Zhang, T. Lin, P. Zhang, P. He, and K.W. Paik, Highly mechanical and high-temperature properties of Cu-Cu joints using citrate-coated nanosized Ag paste in air. Prog. Nat. Sci. 31, 129–140 (2021). https://doi.org/10.1016/j.pnsc.2020.12.004.

    Article  CAS  Google Scholar 

  15. C. Pei, C.T. Chen, K. Suganuma, and G.C. Fu, Thermal stability of silver paste sintering on coated copper and aluminum substrates. J. Electron. Mater. 47(1), 811–819 (2018). https://doi.org/10.1007/s11664-017-5857-2.

    Article  CAS  Google Scholar 

  16. J.G. Bai, Z.Z. Zhang, J.N. Calata, and G.-Q. Lu, Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE T. Comp. Pack. Man. 29(3), 589–593 (2006). https://doi.org/10.1109/tcapt.2005.853167.

    Article  CAS  Google Scholar 

  17. S. Chen, C. Labarbera, and N.C. Lee, Silver sintering paste rendering low porosity joint for high power die attach application. Add. Conf. Dev. Pack. HiTEC HiTEN CICMT (2016). https://doi.org/10.4071/2016-hitec-134.

    Article  Google Scholar 

  18. R.Z. Li, A. Hu, D. Bridges, T. Zhang, K.D. Oakes, R. Peng, U. Tumuluri, Z. Wu, and Z. Feng, Robust Ag nanoplate ink for flexible electronics packaging. Nanoscale 7(16), 7368–7377 (2015). https://doi.org/10.1039/c5nr00312a.

    Article  CAS  Google Scholar 

  19. S. Katsuaki, Current status of joining ceramics and metals. Ceramist 9, 30–36 (2006).

    Google Scholar 

  20. T. Kunimune, M. Kuramoto, S. Ogawa, M. Nogi, and K. Suganuma, Low-temperature pressure-less silver direct bonding. IEEE T. Comp. Pack. Man. 3, 363–369 (2013). https://doi.org/10.1109/tcpmt.2012.2231901.

    Article  CAS  Google Scholar 

  21. W. Wang, G. Zou, Q. Jia, H. Zhang, B. Feng, Z. Deng, and L. Liu, Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics. Mater. Sci. Eng. A Struct. 793, 139894 (2020). https://doi.org/10.1016/j.msea.2020.139894.

    Article  CAS  Google Scholar 

  22. Z. Liu, J. Cai, Q. Wang, Z. Wang, L. Liu, and G. Zou, Thermal-stable void-free interface morphology and bonding mechanism of low-temperature Cu-Cu bonding using Ag nanostructure as intermediate. J. Alloy. Compd. 767, 575–582 (2018). https://doi.org/10.1016/j.jallcom.2018.07.060.

    Article  CAS  Google Scholar 

  23. J. Qiang, Z. Guisheng, Z. Hongqiang, W. Wengan, D. Zhongyang, R.H.L. Lei, P. Peng, and G. Wei, Research progress in sintering-bonding with nanoparticle materials as interlayer and its packaging application. J. Mech. Eng. 58, 2–16 (2022). https://doi.org/10.3901/JME.2022.02.002.

    Article  Google Scholar 

  24. S.A. Paknejad, and S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 70, 1–11 (2017). https://doi.org/10.1016/j.microrel.2017.01.010.

    Article  CAS  Google Scholar 

  25. M.A. Asoro, D. Kovar, and P.J. Ferreira, Effect of surface carbon coating on sintering of silver nanoparticles: in situ TEM observations. Chem. Commun. 50(37), 4835–4838 (2014). https://doi.org/10.1039/c4cc01547a.

    Article  CAS  Google Scholar 

  26. J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, and Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scripta Mater. 66, 582–585 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.007.

    Article  CAS  Google Scholar 

  27. S. Zabihzadeh, S. Van Petegem, L.I. Duarte, R. Mokso, A. Cervellino, and H. Van Swygenhoven, Deformation behavior of sintered nanocrystalline silver layers. ACTA Mater. 97, 116–123 (2015). https://doi.org/10.1016/j.actamat.2015.06.040.

    Article  CAS  Google Scholar 

  28. C. Chen, Z. Zhang, and K. Suganuma, Advanced SiC power module packaging technology direct on DBA substrate for high temperature applications: Ag sinter joining and encapsulation resin adhesion. IEEE T Electron. Pack. (2020). https://doi.org/10.1109/ECTC32862.2020.00223.

    Article  Google Scholar 

  29. S. Nishimoto, Y. Nagatomo, T. Nagase, Development of direct bonded aluminum substrates with sintered Ag layer for SiC power modules. PCIM, (2015) 3924.

  30. K. Lu, Sintering of nanoceramics. Int. Mater. Rev. (2008). https://doi.org/10.1179/174328008X254358.

    Article  Google Scholar 

  31. H. Fang, C. Wang, S. Zhou, Q. Kang, and T. Suga, Rapid pressureless and low-temperature bonding of large-area power chips by sintering two-step activated Ag paste. J. Mater. Sci. Mater. EL 31(8), 6497–6505 (2020). https://doi.org/10.1007/s10854-020-03207-y.

    Article  CAS  Google Scholar 

  32. Z.P. Bažant, Z.P. Bazant, and K.H.J. Buschow, Creep of concrete. Encycl. Mater. Sci. Technol. (2001). https://doi.org/10.1016/B0-08-043152-6/00325-9.

    Article  Google Scholar 

  33. J.E. Blendell, and W. Rheinheimer, Solid-state sintering. Ref. Mod. Mater. Sci. Mater. Eng. (2020). https://doi.org/10.1016/B0-08-043152-6/01564-3.

    Article  Google Scholar 

  34. C. Chen, S. Nagao, K. Suganuma, J. Jiu, and K. Tsuruta, Self-healing of cracks in Ag joining layer for die-attachment in power devices. Appl. Phys. Lett. 109, 93503 (2016). https://doi.org/10.1063/1.4962333.

    Article  CAS  Google Scholar 

  35. P.G. Neudeck, Silicon carbide electronic devices. Encycl. Mater. Sci. Technol. (2001). https://doi.org/10.1016/B0-08-043152-6/01520-5.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52205324) and the R&D Program of the Beijing Municipal Education Commission (KZ202210005005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Jia or Fu Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Wang, Y., Jia, Q. et al. Low-Temperature-Sintered Nano-Ag Film for Power Electronics Packaging. J. Electron. Mater. 53, 228–237 (2024). https://doi.org/10.1007/s11664-023-10763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10763-6

Keywords

Navigation