Skip to main content
Log in

Bismuth Ferrite Nanoparticle-Blended Carbon Soot-Based Cathode for Enhanced Power Production in Microbial Fuel Cell

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An air-cathode microbial fuel cell (MFC) was implemented to examine the cathode material: bismuth ferrite (BFO) nanoparticles mixed with carbon soot. The physicochemical characterization of prepared carbon soot showed that the carbon soot particles were porous and graphitic consisting of 88% carbon. The physicochemical characterization of BFO confirms that the nanoparticles are spherical, have a high surface area, and are electrochemically active. Based on the results of the linear sweep voltammetry (LSV) examination, the large surface area of BFO has been accounted for by high ORR (oxidation–reduction reaction) activities. The increasing loading rates of BFO (0.25–1 mg/cm2) showed increasing power output, with 1 mg/cm2 achieving the maximum power density and current density (11.99 W/m3 and 35.45 A/m3, respectively), which were comparable to the power output of platinum. According to electrochemical impedance spectroscopy (EIS) analysis, BFO showed the lowest resistance (Rct) across each electrode transmission (39.5) at a loading rate of 1 mg/cm2. This low Rct value indicates that the cathode catalyst facilitates high electron transfer, thereby increasing the cathode's ORR activity. The cathode biofouling analysis for different concentrations of BFO conducted via confocal laser scanning microscopy (CLSM) showed that 1.0 mg/cm2 BFO showed the least biofouling. The results of the research suggest that BFO-blended carbon soot has potential as a cost-effective alternative for field-scale usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.R. Sharvini, Z.Z. Noor, C.S. Chong, L.C. Stringer, and R.O. Yusuf, Energy consumption trends and their linkages with renewable energy policies in East and Southeast Asian countries: challenges and opportunities. Sustain. Environ. Res. 28, 257 (2018).

    Article  CAS  Google Scholar 

  2. B.E. Logan, Microbial Fuel Cells (Hoboken: Wiley, 2008).

    Google Scholar 

  3. D.A. Jadhav, A.A. Carmona-Martínez, A.D. Chendake, S. Pandit, and D. Pant, Modeling and optimization strategies towards performance enhancement of microbial fuel cells. Biores. Technol. 320, 124256 (2021).

    Article  CAS  Google Scholar 

  4. A.J. Slate, K.A. Whitehead, D.A.C. Brownson, and C.E. Banks, Microbial fuel cells: an overview of current technology. Renew. Sustain. Energy Rev. 101, 60 (2019).

    Article  CAS  Google Scholar 

  5. A.S. Mathuriya and J.V. Yakhmi, Microbial fuel cells - Applications for generation of electrical power and beyond. Crit. Rev. Microbiol. 42, 127 (2016).

    Article  CAS  Google Scholar 

  6. H. Moon, I.S. Chang, and B.H. Kim, Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Biores. Technol. 97, 621 (2006).

    Article  CAS  Google Scholar 

  7. K. Rabaey and W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 6, 291 (2005).

    Article  Google Scholar 

  8. A.E. Franks and K.P. Nevin, Microbial fuel cells, a current review. Energies 3, 899 (2010).

    Article  CAS  Google Scholar 

  9. K. Zhong, M. Li, Y. Yang, H. Zhang, and B. Zhang, Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells. Appl. Energy 242, 516 (2019).

    Article  CAS  Google Scholar 

  10. S. Khilari, S. Pandit, M.M. Ghangrekar, D. Das, and D. Pradhan, Graphene supported α-mnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Adv. 3, 7902 (2013).

    Article  CAS  Google Scholar 

  11. J. Ahmed, Y. Yuan, L. Zhou, and S. Kim, Experimental and computational analyses of thermal runaway behavior of lithium ion pouch battery at low ambient pressure. J. Power Sour. 208, 170 (2012).

    Article  CAS  Google Scholar 

  12. S. Liu, R. Wang, C. Ma, D. Yang, and D. Li, Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. Chem. Eng. J. 7, 123627 (2019).

    Google Scholar 

  13. S. You, N. Ren, Q. Zhao, J. Wang, and F. Yang, Fuel Cells 9, 588 (2009).

    Article  CAS  Google Scholar 

  14. G.D. Bhowmick, S. Das, M.M. Ghangrekar, A. Mitra, and R. Banerjee, J. Inst. Eng. (India) Ser. A 100, 675 (2019).

    Article  CAS  Google Scholar 

  15. J. Shanthi Sravan, T.S.K. Raunija, A. Verma, and S. Venkata Mohan, Impregnated thermoset pre-pressurized carbon composite electrodes in microbial fuel cell Compositional functionalities influence on ORR with reference to graphite. Fuel 285, 119273 (2021).

    Article  CAS  Google Scholar 

  16. S. Karthick, S. Vishnuprasad, K. Haribabu, and N. manju, Activated carbon derived from ground nutshell as a metal-free oxygen reduction catalyst for air cathode in single chamber microbial fuel cell. Biomass Convers. Biorefinery 12, 1729 (2021).

    Google Scholar 

  17. C. Gao, L. Liu, T. Yu, and F. Yang, Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. J. Membr. Sci. 549, 533 (2018).

    Article  CAS  Google Scholar 

  18. X. Li, Y. Lin, Y. Yang, W. Zhang, M. Hu, Y. Zhong, Y. Liao, and W. Li, Defective metal-organic frameworks: current status and perspectives. Electrochim. Acta 391, 138922 (2021).

    Article  CAS  Google Scholar 

  19. S. Khilari, S. Pandit, J.L. Varanasi, D. Das, and D. Pradhan, Appl. Mater. Interfaces 7, 20657–20666 (2015).

    Article  CAS  Google Scholar 

  20. I. Das, T. Noori, G. Dhar, and M.M. Ghangrekar, Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. Int. J. Hydrogen Energy 43, 7501–7510 (2018).

    Article  Google Scholar 

  21. B. Zhang, D. Wang, B. Yu, F. Zhou, and W. Liu, Candle soot as a supercapacitor electrode material. RSC Adv. 4, 2586 (2014).

    Article  CAS  Google Scholar 

  22. Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ. Sci. 7, 3326–3333 (2014).

    Article  CAS  Google Scholar 

  23. S. Singh, P.K. Bairagi, and N. Verma, Candle soot-derived carbon nanoparticles: an inexpensive and efficient electrode for microbial fuel cells. Electrochim. Acta 264, 119 (2018).

    Article  CAS  Google Scholar 

  24. B.-Y. Chen, Y.-T. Tsao, and S.-H. Chang, Cost-effective surface modification of carbon cloth electrodes for microbial fuel cells by candle soot coating. Coatings 8, 468 (2018).

    Article  Google Scholar 

  25. S. Li, J. Jiang, S.-H. Ho, F. Li, and W. Zeng, Bimetallic nitrogen-doped porous carbon derived from ZIF-L&FeTPP@ZIF-8 as electrocatalysis and application for antibiotic wastewater treatment. Sep. Purif. Technol. 276, 119259 (2021).

    Article  CAS  Google Scholar 

  26. M. Khan, J. Shukla, P. Saxena, A. Mishra, and P. Sharma, Evaluation of structural and multifunctional properties of BaTiO3–NiFe2–xSmxO4 ceramic composites. Appl. Phys. A 128, 1120 (2022).

    Article  CAS  Google Scholar 

  27. M.V. Kannan and G. Gnana Kumar, Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications. Biosens. Bioelectron. 77, 1208 (2016).

    Article  CAS  Google Scholar 

  28. A. Kumar, A. Kumar, S. Tyagi, R. Chandra, and D. Kaur, Room temperature tunability of ferroelectricity and dielectricity in La and Mn codoped BiFeO3 nanoflakes: implications for electronic devices applications. Ceram. Int. 49, 1960 (2023).

    Article  CAS  Google Scholar 

  29. S. P. Jung and S. Pandit, Chapter 3.1 - Important Factors Influencing Microbial Fuel Cell Performance, in Microbial Electrochemical Technology, 377-406 (Elsevier, 2019).

  30. F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 061301 (2012).

    Article  Google Scholar 

  31. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C: Solid State Phys. 13, 1931 (1980).

    Article  CAS  Google Scholar 

  32. V. Raghavan, Materials Science and Engineering: A First Course (Delhi: PHI Learning Pvt. Ltd., 2015).

    Google Scholar 

  33. D. Tian, H. Zhou, H. Zhang, P. Zhou, J. You, G. Yao, Z. Pan, Y. Liu, and B. Lai, Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: from basic catalyst design principles to novel enhancement strategiesChemical. Eng. J. 428, 131166 (2022).

    CAS  Google Scholar 

  34. F. Mushtaq, X. Chen, M. Hoop, H. Torlakcik, E. Pellicer, J. Sort, C. Gattinoni, B.J. Nelson, and S. Pané, iScience 4, 236 (2018).

    Article  CAS  Google Scholar 

  35. G. Catalan and J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).

    Article  CAS  Google Scholar 

  36. A. Reyes, C. de la Vega, M.E. Fuentes, and L. Fuentes, BiFeO3: Synchrotron radiation structure refinement and magnetoelectric geometry. J. Eur. Ceram. Soc. 27, 3709 (2007).

    Article  CAS  Google Scholar 

  37. S.M. Lam, J.C. Sin, H. Zeng, H. Lin, H. Li, A.R. Mohamed, and J.W. Lim, Ameliorating Cu2+ reduction in microbial fuel cell with Z-scheme BiFeO3 decorated on flower-like ZnO composite photocathode. Chemosphere 287, 132384 (2022).

    Article  CAS  Google Scholar 

  38. M.-A. Shahbazi, L. Faghfouri, M.P.A. Ferreira, P. Figueiredo, H. Maleki, F. Sefat, H. Jouni, and H.A. Santos, The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem. Soc. Rev. 49, 1253 (2020).

    Article  CAS  Google Scholar 

  39. Y. Zhang, Y. Hu, S. Li, J. Sun, and B. Hou, Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell. J. Power Sour. 196, 9284 (2011).

    Article  CAS  Google Scholar 

  40. S.M. Lam, Z.H. Jaffari, J.C. Sin, H. Zeng, H. Lin, H. Li, and A.R. Mohamed, Insight into the influence of noble metal decorated on BiFeO3 for 2, 4-dichlorophenol and real herbicide wastewater treatment under visible light. Coll. Surf. A Physicochem. Eng. Aspects 614, 126138 (2021).

    Article  CAS  Google Scholar 

  41. P. Dange, N. Savla, S. Pandit, R. Bobba, S.P. Jung, P.K. Gupta, M. Sahni, and R. Prasad, A comprehensive review on oxygen reduction reaction in microbial fuel cells. J. Renew. Mater. 10, 665 (2022).

    Article  CAS  Google Scholar 

  42. O.O. Kolajo, C. Pandit, B.S. Thapa, S. Pandit, A.S. Mathuriya, P.K. Gupta, D.A. Jadhav, D. Lahiri, M. Nag, and V.J. Upadhye, Impact of cathode biofouling in microbial fuel cells and mitigation techniques. Biocatal. Agric. Biotechnol. 43, 102408 (2022).

    Article  CAS  Google Scholar 

  43. T. Pema, A. Kumar, B. Tripathi, S. Pandit, S. Chauhan, S. Singh, P.K. Dikshit, A.S. Mathuriya, P.K. Gupta, D. Lahiri, R.C. Singh, J. Anand, and K.K. Chaubey, Investigating the performance of lithium-doped bismuth ferrite -graphene nanocomposites as cathode catalyst for the improved power output in microbial fuel cells. Catalysts 13, 618 (2023).

    Article  CAS  Google Scholar 

  44. K. Biswas, D. De, J. Bandyopadhyay, N. Dutta, S. Rana, P. Sen, S.K. Bandyopadhyay, and P.K. Chakraborty, Enhanced polarization, magnetic response and pronounced antibacterial activity of bismuth ferrite nanorods. Mater. Chem. Phys. 195, 207 (2017).

    Article  CAS  Google Scholar 

  45. C. Rameshkumar, R. Gayathri, and R. Subalakshmi, Synthesis and characterization of undopped bismuth ferrite oxide nanoparticles for the application of cancer treatment. Mater. Today Proc. 43, 3662 (2021).

    Article  CAS  Google Scholar 

  46. C. Claudio and S. Chellam, Bismuth Nanoparticles : Antimicrobials of Broad-Spectrum , Low Cost and Safety Outline : (Nanomedicine, 2014).

  47. Z. Haider, S. Lam, J. Sin, and H. Zeng, Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite. Mater. Sci. Semicond. Process. 101, 103 (2019).

    Article  Google Scholar 

  48. T.O. Ajiboye, O.A. Oyewo, and D.C. Onwudiwe, he performance of bismuth-based compounds in photocatalytic applications. Surf. Interfaces 23, 100927 (2021).

    Article  CAS  Google Scholar 

  49. P. Chatterjee and M.M. Ghangrekar, Design of clayware separator-electrode assembly for treatment of wastewater in microbial fuel cells. Appl. Biochem. Biotechnol. 173, 378 (2014).

    Article  CAS  Google Scholar 

  50. A. Vempaty and A.S. Mathuriya, Strategic development and performance evaluation of functionalized tea waste ash-clay composite as low-cost, high-performance separator in microbial fuel cell. Environ. Technol. 44, 2713 (2022).

    Article  Google Scholar 

  51. B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181 (2006).

    Article  CAS  Google Scholar 

  52. M. Djellali, M. Kameche, H. Kebaili, M. Mustapha, and A. Benhamou, Synthesis of nickel-based layered double hydroxide (LDH) and their adsorption on carbon felt fibres: application as low cost cathode catalyst in microbial fuel cell (MFC). Environ. Technol. 42, 492 (2021).

    Article  CAS  Google Scholar 

  53. A.D. Pathak and C.S. Sharma, Candle soot carbon cathode for rechargeable Li-CO2-Mars battery chemistry for Mars exploration: a feasibility study. Mater. Lett. 283, 128868 (2021).

    Article  CAS  Google Scholar 

  54. R. Kanakaraj and C. Sudakar, Candle soot carbon nanoparticles as high-performance universal anode for M-ion (M = Li+, Na+ and K+) batteries. J. Power Sour. 458, 228064 (2020).

    Article  CAS  Google Scholar 

  55. T. Ghosh, R. Ghosh, U. Basak, S. Majumdar, R. Ball, D. Mandal, A.K. Nandi, and D.P. Chatterjee, Candle soot derived carbon nanodot/polyaniline hybrid materials through controlled grafting of polyaniline chains for supercapacitors. J. Mater. Chem. A 6, 6476 (2018).

    Article  CAS  Google Scholar 

  56. C.J. Raj, B.C. Kim, B.-B. Cho, W.-J. Cho, S.-J. Kim, S.Y. Park, and K.H. Yu, Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot. Bull. Mater. Sci. 39, 241 (2016).

    Article  CAS  Google Scholar 

  57. V.K. Bharti, A. Gangadharan, S.K. Kumar, A.D. Pathak, and C.S. Sharma, Protective interlayer for trapping polysulfides and conducting host for sulfur: dual role of candle soot carbon for the development of high performance Lithium–Sulfur battery. Mater. Adv. 2, 3031 (2021).

    Article  CAS  Google Scholar 

  58. Y. Hung, T. Liu, and H. Chen, Renewable coffee waste-derived porous carbons as anode materials for high-performance sustainable microbial fuel cells. ACS Sustain. Chem. Eng. 7, 16991 (2019).

    Article  CAS  Google Scholar 

  59. A. Kumar and D. Varshney, Crystal structure refinement of Bi1− xNdxFeO3 multiferroic by the Rietveld method. Ceram. Int. 38, 3935 (2012).

    Article  CAS  Google Scholar 

  60. L.V. Costa, R.C. Deus, C.R. Foschini, E. Longo, M. Cilense, and A.Z. Simões, Experimental evidence of enhanced ferroelectricity in Ca doped BiFeO3. Mater. Chem. Phys. 144, 476–483 (2014).

    Article  CAS  Google Scholar 

  61. X. Wang, Y. Zhang, and Z. Wu, Magnetic and optical properties of multiferroic bismuth ferrite nanoparticles by tartaric acid-assisted sol–gel strategy. Mater. Lett. 3, 486–488 (2010).

    Article  Google Scholar 

  62. R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3. Phys. Rev. B 73, 2 (2006).

    Article  Google Scholar 

  63. R. Sankar Ganesh, S.K. Sharma, S. Sankar, B. Divyapriya, E. Durgadevi, P. Raji, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, and D.Y. Kim, Microstructure, structural, optical and piezoelectric properties of BiFeO3 nanopowder synthesized from sol–gel. Curr. Appl. Phys. 17, 409–416 (2017).

    Article  Google Scholar 

  64. J.R. Kim, J.-Y. Kim, S.-B. Han, K.-W. Park, G.D. Saratale, and S.-E. Oh, Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells. Biores. Technol. 102, 342 (2011).

    Article  CAS  Google Scholar 

  65. E. HaoYu, S. Cheng, K. Scott, and B. Logan, Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Sour. 171, 275 (2007).

    Article  CAS  Google Scholar 

  66. S. Khilari, S. Pandit, D. Das, and D. Pradhan, Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells. Biosens. Bioelectron. 54, 534 (2014).

    Article  CAS  Google Scholar 

  67. S. Rout, A.K. Nayak, J.L. Varanasi, D. Pradhan, and D. Das, Enhanced energy recovery by manganese oxide/reduced graphene oxide nanocomposite as an air-cathode electrode in the single-chambered microbial fuel cell. J. Electroanal. Chem. 815, 1 (2018).

    Article  CAS  Google Scholar 

  68. M.R. Majidi, F. Shahbazi Farahani, M. Hosseini, and I. Ahadzadeh, Low-cost nanowired α-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell. Bioelectrochemistry 125, 38 (2019).

    Article  CAS  Google Scholar 

  69. Z.H. Jaffari, S.-M. Lam, J.-C. Sin, and H. Zeng, Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite. Mater. Sci. Semicond. Process. 101, 103 (2019).

    Article  CAS  Google Scholar 

  70. M. Sharmila, R.J. Mani, C. Parvathiraja, S.M.A. Kader, M.R. Siddiqui, S.M. Wabaidur, M.A. Islam, and W.-C. Lai, Visible light photocatalyst and antibacterial activity of BFO (Bismuth Ferrite) nanoparticles from honey. Water 14, 1545 (2022).

    Article  CAS  Google Scholar 

  71. Y. Yang, J.Y. Sun, K. Zhu, Y.L. Liu, and L. Wan, Structure properties of BiFeO3 films studied by micro-Raman scattering. J. Appl. Phys. 103, 093532 (2008).

    Article  Google Scholar 

  72. G.D. Bhowmick, S. Das, K. Adhikary, M.M. Ghangrekar, and A. Mitra, Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell. Int. J. Hydrogen Energy 44, 22218 (2019).

    Article  CAS  Google Scholar 

  73. F. Zhang, S. Cheng, D. Pant, G. Van Bogaert, and B.E. Logan, Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Commun. 11, 2177 (2009).

    Article  CAS  Google Scholar 

  74. G.D. Bhowmick, S. Das, H.K. Verma, B. Neethu, and M.M. Ghangrekar, Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4. Electrochim. Acta 310, 173 (2019).

    Article  CAS  Google Scholar 

  75. I. Das, S. Das, and M.M. Ghangrekar, Application of bimetallic low-cost CuZn as oxygen reduction cathode catalyst in lab-scale and field-scale microbial fuel cell. Chem. Phys. Lett. 751, 137536 (2020).

    Article  CAS  Google Scholar 

  76. G.D. Bhowmick, M.T. Noori, I. Das, B. Neethu, M.M. Ghangrekar, and A. Mitra, Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. Int. J. Hydrogen Energy 43, 7501 (2018).

    Article  CAS  Google Scholar 

  77. S. Chauhan, A. Kumar, S. Pandit, A. Vempaty, M. Kumar, B.S. Thapa, N. Rai, and S.G. Peera, Investigating the performance of a zinc oxide impregnated polyvinyl alcohol-based low-cost cation exchange membrane in microbial fuel cells. Membranes 13, 55 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants from Mahatma Gandhi Central University and the Sharda University seed grant initiative (SUSF2001/01) and Industrial Project Grant (SU/SF/2023/25) are gratefully acknowledged by the authors. The Life Sciences Research Board, the Defence Research and Development Organization (DRDO) (File No. LSRB/81/48222/LSRB-368/BTB/2020), and the Department of Science and Technology (File No. CRD/2018/000022) all provided funding for the completion of this work, which the authors gladly acknowledge.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SP, ASM, MS; Experiment: AV, ASM, SP, and MS; writing—original draft preparation; AV, SP, MS, ASM, and MS; writing—review; RP, ASM, MS, SC, AKR, and SP: editing; SC, SP, CP, ASM, and RP; supervision: MS, RP, and ASM. The published version of the work has been reviewed and approved by all authors.

Corresponding authors

Correspondence to Mohit Sahni or Soumya Pandit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vempaty, A., Sahni, M., Pandit, C. et al. Bismuth Ferrite Nanoparticle-Blended Carbon Soot-Based Cathode for Enhanced Power Production in Microbial Fuel Cell. J. Electron. Mater. 53, 106–120 (2024). https://doi.org/10.1007/s11664-023-10757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10757-4

Keywords

Navigation